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Berry’s phase in the coherent excitation of a two-level atom is shown to be an observable effect,
as a shift of the sidebands of the Mollow’s triplet. Berry’s phase effects, the adiabatic following
model, and nonadiabatic evolution of a two-level atom are discussed in a unified manner.

Berry’s phase! has attracted a great deal of attention re-
cently.? Berry’s phase is a phase related to the phase fac-
tor of adiabatic theorem, known since 1928.3 It has been
taken to be an insignificant phase factor of quantum
mechanics until recently when Berry, in a classic paper, !
drew attention to the fact that the adiabatic phase has a
circuit dependence, during a cyclic evolution, and that this
phase should be observed. A two-level atom interacting
with a coherent laser light, a well-known quantum optical
system, is one of the potential candidates for the verifi-
cation of Berry’s phase. It is important to discuss Berry’s
phase in the two-level atom, first, because one of the sim-
ple examples chosen in the original paper' bears exact
similarity to the dynamical equations of a two-level atom
interacting with a coherent resonant laser light, and
second, because the dynamics of the two-level atom has
been studied in quantum optics literature fairly thorough-
ly over the last three decades. Then— why should Berry’s
phase not be observed in a quantum optics experiment?
What experiment should be planned to see the effect?
What do Berry’s phase effects mean in resonance fluores-
cence in a two-level system whose dynamics has already
been investigated using complete quantum electrodynam-
ics? These are natural questions and have been addressed
recently with interesting suggestions. We show in the
following that Berry’s phase effects are measured
numerous times, perhaps even in a single day, in almost all
laboratories of quantum optics. The relationship between
Berry’s phase, adiabatic following model® of quantum op-
tics, and nonadiabatic evolution is also discussed.

An important result of this paper is the demonstration
that the quantum-mechanical phase factor of adiabatic
theorem is measurable in the dynamics of a two-level
atom interacting with a coherent laser light.

In order to demonstrate the above and in view of possi-
ble confusion later on, I prefer to begin ab initio. Adia-
batic evolution and circuit in a parameter space are two
ingredients of a discussion of Berry’s phase, which we re-
call briefly in the following. Adiabatic evolution means
that if the Hamiltonian changes slowly in time it is possi-
ble to approximate solution of the Schrédinger equation
by means of eigenfunctions of the instantaneous Hamil-
tonian, so that a particular eigenfunction at one time goes
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over into the corresponding eigenfunction at a later time.
The slowness of the variation of the Hamiltonian is deter-
mined by the ratio of the off-diagonal matrix element of
the time derivative of the Hamiltonian, to the relevant en-
ergy separation between the eigenstates. That is, for the
evolution to be adiabatic, one must have

J i dH/dtu,)dr
E«—E,

=0, n=k, (1

where u, and E, are, respectively, the nth instantaneous
eigenfunction and energy eigenvalue of the Hamiltonian,
H(z). For simplicity, the spectrum of eigenvalues is as-
sumed to be discrete and characterized by the single sub-
script n. The evolution of the state function y(¢) of the
system is then governed at a different time by

ya(0) =exp [—# J. ’En(z')at']exp[m(t)lun. @

The phase y,(¢) is the phase of the adiabatic theorem and
is given by

v = [ Cun | 0/dit | un)ar . 3)

Berry points out that y,(z) does not necessarily return to
its original value even when the Hamiltonian, having
made an excursion in its parameter space, returns to its
original value. The concept of the return to the original
value of H(z) defines a closed circuit in the parameter
space of the Hamiltonian. The difference between the
values of the phase y,(t) before and after the completion
of the circuit is referred to as Berry’s phase.

Consider now a two-level atom, having eigenstates |1
and |2) with energy eigenvalues E, and E,, respectively,
interacting with a monochromatic radiation of angular
frequency o (with ho=E,—E,, E\>E,;). The
Schrédinger equation of this system, in the slowly varying
envelope approximation of radiation and the rotating
wave approximation of the interaction, can be cast in the
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form$ closed circuit in the parameter space when the tip of the
he —2d vector ©(z) makes a circle about the z axis, then Z(¢)

ihd al_1 12€ | a @) =g2Z and n(z) =0. The vector 02(¢) is then given by (11)

o) 2 |—2dhe* —hs |0} with a replaced by

diy=(1|ex|2), h6=E,—E,—ho, (5) a=ao+qt . (13)
(a,b)— exp——(E | +E>+ ho)t(4,B), (6)  Note that vector 0(¢) returns to its original value after a

a P 2n 2 period T =2n/q. Note further that because of the finite

| v/(t))-A(t)exp[—%Elt] |1

+B(t)exp[—-:TE2t] |2y, @))

F(t) =cexp(—iont)+e* exp(+int) , 8)

with F being the resonant electromagnetic radiation. In
the familiar notation of a 2%2 Hamiltonian, one has
2H) = —2H»=hé and 2H |, =H3 =X —iY. We write
in the following X —iY =gexp(ia), where g = —2|d ¢
and a are real. The eigenvalues of this 2x2 Hamiltonian
are = k with eigenstates | +),

4k?=(hé)*+g2. 9

The dynamics of Eq. (4), for the constant values of the
parameters &,8,a, is represented by the precession of the
Bloch vector V about a pseudomagnetic field 0, defined
by

Vi+iV, =2ab*, (10a)
V,=lal|?—|b]2, (10b)
Q= -fl—cosa, —;‘l—sina,J . (11)

The angular velocity of precession of ¥, which is in the
clockwise direction, is @ =| @ |. The angle between the
vector V and 0 is a constant of the motion and is deter-
mined by the initial conditions. Note that the precessing
vector V represents a solution of Eq. (4) which is a super-
position of the eigenstates | = ). When the angle between
V and 0 is 0° or 180° there is no precession and the vec-
tor V remains fixed parallel or antiparallel to the vector
Q. The system is then said to be in the eigenstate | +) or
| =) respective to the angle of 0° or 180° between V and
Q. It has recently been demonstrated’ that it is possible
to prepare a two-level atom in one of such eigenstates.

For the considerations of Berty’s phase, we begin by as-
suming that the system has been prepared in one of the
| &) states, say the | —). Note that the vector @ is a
convenient representation for the variation of the parame-
ters 6,g,a of the 2x2 Hamiltonian. With the help of
8,g,a the vector Q(z) can be varied in magnitude and in-
clination with respect to the Cartesian coordinate axes.
One may model the variation of Q(¢) by assuming?®

48 Xz +n0a®).
The first term in (12) represents the change in the inclina-
tion of 0 (z), with respect to a vector Z(¢), and the second
term represents the change in the magnitude of Q(¢) by a
scalar multiplicative factor n(z). Consider a typical

(12)

return time the variation of the Hamiltonian may appear
to be nonadiabatic; but as long as g/k = 0, the variation
of H can be taken to be adiabatic. The adiabatic evo-
lution of the system, prepared initially in state, | =),
¢—(t0) =1, and varied according to (13), is given by

ly@) =p+ ()| +)+o-()| =),

o (1) =exp %k(t—to)+ip2q(t—to) o—(to),  (14)

0+ () =04 (20) =0.

Here y—(¢t) =p2q(t—1o) is the Berry’s phase factor with
p=g/2lk(2k — h8)1'2. To examine the physical signif-
icance of this factor consider the two observables, namely,
the coherent signal represented by (10a) and the number
of photons emitted which is proportional to (10b). One
finds for the solution (14)

Ve+iV, = —2tpexpli(ag+gt)l | o-Go) |2,  (15)

v.=1¢12=1pl?, (16)
1 (2k—ns )"

C-E [——E——J . an

Expressions (14) and (15) reveal two effects of the time-
dependent Hamiltonian ©(z). First, it induces Berry’s
phase factor in (14); and second, it shifts the central fre-
quency component of the coherent signal determined by
(15).

The absence of Berry’s phase factor in (15) is an ex-
pression of the fact that the phase factor of an eigenstate
cannot be observed by examining the expectation values of
the observables of the eigenstate. The situation is very
different if one works with superposition of states | £ ).
As noted above a superposition state represents for a con-
stant Hamiltonian Q.= 0 (a=ag), the precession of the
Bloch vector V at a fixed angle to the vector Q.. On the
other hand, when the Hamiltonian Q (¢) is time dependent
the superposition state can make complex trajectories of
the tip of the vector ¥ on the Bloch sphere. Consider the
cyclic Hamiltonian Q (¢) = @ (a), a being defined by (13).
The adiabatic evolution, due to this time-dependent Ham-
iltonian, of the superposition state represents precession of
vector V about the time-dependent vector Q(z).° As a re-
sult, the expression similar to (15) demonstrates that the
coherent signal contains three frequency components, viz.

©0—gq, w—2q+2p2q+£lf-, and w—2p2q—%. (18)

h
Comparing these components with the Mollow triple
for the constant Q. = Q (a =ay), one observes that for the
€0 (¢) defined by (13) above, the Berry’s phase factor is
contained in the shift of the sidebands. Thus Berry’s
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phase factor is observable as frequency shifts of the side-
band of the Mollow triplet spectrum.

Such effects are indeed observed as can be seen from
the following exact calculations. Note that the time
dependence (13) can be absorbed in the transformation
(6) by redefining w— w —gq. Consequently, in (4) §— &
+¢ and the problem of time-dependent Hamiltonian is re-
duced to a constant Hamiltonian for which the exact solu-
tion gives

Vi+ivy=¢Cp'(los | 2= 1o-1?)
—p'eXp[—%(t—to)]mcb’i
+§'zexp[+£’:—(t—to)]¢—¢i. (19)

J

[—ihp2()(d/de) (@) /p(t) + hal(t)p(t)lexpl—ia(t)]

k@) + | p2(0)a() |

Two important points are worth noting from (20) and
(21). First, Berry’s phase factors are nonzero only for
a#=0 (see also Barnett, Ellinas, and Dupertuis*), and
second, adiabatic evolution in two-level atom dynamics
can be achieved by making k(z) much larger than the
derivatives of a, &, and g.!' This may be achieved in the
experiments either by g> (4,£,6) or > (4,£,6), or a
combination of both. The first situation is implied in
dressed atom theories,'? and the second situation is con-
sidered in the adiabatic following model.> It may be not-
ed here that Berry’s phase effects were not considered in
the adiabatic following model as only cases with ¢ =0
were examined there. !>

Clearly all shifts of the Rabi frequency sidebands are
not a consequence of Berry’s phase. Only such shifts of
the sidebands which occur within adiabatic evolution and
for constant a and g are comparable to Berry’s phase
effects and are not contaminated by other dynamical and
nonadiabatic phase factors. Expression (19), for example,
is valid in general and includes adiabatic, that is when
q<k=k', as well as nonadiabatic effects, i.e., when
g k=k'. It has been shown that all corrections, due to
higher-order iterations'4 to the results (18) are contained
in (19).

We have thus shown that Berry’s phase effects in
coherent excitation of two-level atoms are observable. In
view of the semiclassical nature of the discussion of
Berry’s phase, the question of its observability has been
discussed here using the semiclassical observables.'> The
quantum-mechanical spectrum of the emitted photons can
also be discussed; however, its dependence on the observ-
ables (15) and (16) is well known '® and need not be dis-
cussed here. Nevertheless, it must be noted that unlike
the semiclassical discussion above'® (and also in Ref. 4),
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¢', p', and k' have the same expressions as before with &
replaced by 6+¢q. The shift of the Rabi frequency due to
a change of the laser frequency (0— w—gq) is clearly
visible in (19), and it is too well known to be proven as an
observable effect.

Note that for a general time-dependent Hamiltonian
(1), characterized by 8(t), a(t), and g(1), the Berry’s
phase factor for the | &) states of the two-level atom are
given by

y+O=F [ p20a)ar, (20)

and that the evolution of the atom either in the pure
eigenstate | &) or in a superposition of them, can be con-
sidered adiabatic only when

=0. @n

r

the quantum-mechanical spectrum shows the shift of the
sidebands even when the atom has been prepared in one of
the eigenstates, | +) or | —). It has been shown, '’ for ex-
ample, that the shift appears during the transient regime,
in the particular sideband present during the initial
stages.'® Such an effect cannot be discussed in semiclassi-
cal language because of the intrinsic quantum nature of
the resonance fluorescence spectrum.

Frequency splitting or shift due to Berry’s phase has
been demonstrated earlier in nuclear quadrupole'® and in
optical polarization phenomenon in anisotropic crys-
tals.?® In these experiments either the quadrupole cou-
pling sample or the anisotropic plate is rotated. In con-
trast, the two-level example of quantum optics is in exact
spirit of the original suggestion' for a spin-4 Hamiltoni-
an, wherein the (effective) magnetic field completes the
cycle. It is an example for which the full quantum elec-
trodynamical results are known. Thus, the semiclassical
and the quantum electrodynamical “Berry’s phase”
effects can be contrasted— as pointed out above. !’

In conclusion, we have demonstrated here that Berry’s
phase effects in coherent excitation of the two-level atom
are observable by comparing the dynamics in two rotating
frames of reference, which is what it must be, since all
motion, be that of a Hamiltonian, @ (¢) are relative.
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