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Taking Bessel beams~J0 beam! as a representation of a conical beam, and a slowly varying envelope
approximation~SVEA! we obtain the results for the theory of third-harmonic generation from an atomic
medium. We demonstrate how the phenomenon of self-phase-matching is contained in the transverse-phase-
matching integral of the theory. A method to calculate the transverse-phase-matching integral containing four
Bessel functions is described which avoids the computer calculations of the Bessel functions. In order to
consolidate the SVEA result an alternate method is used to obtain the exact result for the third-harmonic
generation. The conditions are identified in which the exact result goes over to the result of the SVEA. The
theory for multiple Bessel beams is also discussed which has been shown to be the source of the wide width
of the efficiency curve of the third-harmonic generation observed in experiments.@S1050-2947~96!00308-3#

PACS number~s!: 42.65.Ky, 32.80.Wr, 33.80.Wz

I. INTRODUCTION

Recently Glushko, Kryzhanovsky, and Sarkisyan have
demonstrated@1# the phenomenon of self-phase-matching
~SPM! for an efficient third-harmonic generation~THG! in
atomic vapors. They employ a ring pump geometry. The ring
slit1 is illuminated by an expanded beam from a Nd:YAG
laser. The emanating radiation, focused into a cell containing
atomic vapors, generates a third harmonic~TH! which is
observed at the end of the sample. The observed THG has
been shown to be efficient compared to that due to a disclike
source of the same power of the incident fundamental radia-
tion. Besides this increase in efficiency the remarkable fea-
ture of the SPM lies in the large tolerance it accepts in the
fluctuations of the refractive index mismatch between the
fundamental and the TH. This mismatch may be due to the
variation of pressure, temperature, or Kerr nonlinearity. The
large tolerance in the refractive index also widens the fre-
quency spread of the fundamental that can be used to give
the TH. In short the concept of SPM has important implica-
tions.

In a rapid communication@2# we have reported a theory
based on an idealized representation of the conical beam
used in Ref.@1#. The theory explains salient features of the
THG experiments of Ref.@1#. In this paper we give the de-
tails of this theory. We justify below the use of the Bessel
beams in the theory; explain the slowly varying envelope
approximation~SVEA! used to obtain the reported results in
@2#; and further consolidate the SVEA results by deriving
them by an alternate procedure. We then use the theory to
consider THG using a double-conical beam, to demonstrate
that the resulting TH is a superposition of four Bessel beams,
and that a double-conical beams system can tolerate wider

fluctuations in a refractive index compared to the beams pro-
duced by a single narrow ring slit or even a single broad ring
slit. The case of representing a single broad ring slit by a
series of ring slits placed side by side concentrically is dis-
cussed in detail using the approximate representation consid-
ered in the Appendix. The effects of reducing the radii of the
ring slit and the focal length of the lens employed are con-
sidered at the end.

The use of Bessel beams is justified by two observa-
tions: ~1! that the Bessel beam solution of the scalar wave
equation is a superposition of infinite plane waves with their
wave vectors parallel to the generators of a cone@3# repre-
senting an ideal conical beam; and note that it is such a
superposition in which the authors of Ref.@1# analyze the
concept of SPM;~2! that the method of generating the coni-
cal fundamental radiation using the ring slit in Ref.@1# is
very similar to the method used by Durnin, Miceli, and
Eberly @4# to demonstrate the realizability of the Bessel
beam. Compare the similarities and the dissimilarities of the
lens plus ring slit arrangement used in Ref.@1# and that used
in Ref. @4# ~also see the Appendix!. In Ref. @1# the wider
width ~.10 000mm! of the ring slit and its nonplacement at
the front focal plane of the lens may be noted. In Ref.@4# the
ring slit is of narrower width~.10 mm!, and it is placed at
the front focal plane of the lens. This ensured in Ref.@4# the
plane-wave fronts in the image space for the field generated
by a point on the ring slit. Thus the dissimilarities of the
arrangements in@1# compared to that in@4# create curved-
wave fronts in the focal region of the arrangement of@1#,
however the similarities suggest that the beams in@1#
can—in first approximation—be taken to be a Bessel beam,
or related to the Bessel beam of the type demonstrated by
Durnin, Miceli, and Eberly@3,4#.

The theoretical results presented in Ref.@2# on the basis
of theJ0 beam show variations of the intensity of the gener-
ated TH, with the pressure of the atomic vapor, similar to the
one observed in the experiments. The theory also shows the
variation of the angular spread of the generated TH with
pressure in that at low pressure the TH is widely spread,

1The ring slit used in Ref.@1# can be assumed to have a sharp
inner radius and diffused outer radius determined by the falling
Gaussian intensity of the expanded Nd:YAG beam.
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coming all along the directions of the fundamental radiation.
As pressure increases the angular spread narrows and the
intensity increases. Finally at a critical value of the pressure
the angular spread reduces only to a line along the symmetry
axis. The intensity vanishes all together for pressures beyond
it.

This paper is organized as follows. In Sec. II A we reca-
pitulate some properties of Bessel beams, in II B we give the
details of the slowly varying envelope treatment for the gen-
eration of the TH by a Bessel beam of the fundamental ra-
diation. In Sec. II C it is demonstrated how the transverse-
phase-matching is taken into account by the transverse-
phase-matching integral~TPMI!. A method to evaluate the
TPMI is described.

Section III contains exact treatment not presented in@2#
for a THG by a Bessel beam. The results of this section are
valid, also, for the small sample length. In the limit of the
long sample length, the expression of Sec. II is recovered.

Section IV discusses the multiple Bessel beam situation.
We first describe the two-ring slit produced double-Bessel-
beam configuration. The behavior of the cone angles of the
resulting four Bessel beams is predicted. In Sec. IV B the
case of three Bessel beams is briefly discussed, wherein one
encounters as many as ten Bessel beams in the generated TH.
Section IV C, discusses the case of a broad ring slit similar to
the one used in Ref.@1#. It is found here that intensities of the
generated TH are higher and the width of the tolerance in the
variation of the refractive index is large. Lastly we discuss
the results due to the variation of the ring-slit radii and the
focal length of the lens used.

II. THE SLOWLY VARYING ENVELOPE FORMALISM
FOR BESSEL BEAMS

Before we develop the slowly varying envelope formal-
ism for the Bessel beams we recapitulate some properties of
the Bessel beams@3–6#.

A. The Bessel beam solution

Durnin @3# pointed out the existence of the circularly sym-
metric solutionc~r,z! involving the 0th order Bessel func-
tion, J0,

c~r,z!5Ae2 ik cos~a!zJ0@k sin~a!r#eivt1c.c.,
~2.1!

r25x21y2,

of the scalar wave equation;
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andz is called the principal direction of propagation. For a
linear medium one has

P5x~1!~v!c, ~2.3!

k25
v2

c2
@114px~1!~v!#. ~2.4!

x~1!~v! is the linear susceptibility of the medium for light of
the angular frequencyv. c is the velocity of light in vacuum.
a in ~2.1! is the angle of the cone which has its generators
parallel to the infinity of infinite-plane waves that superpose
to produce the solution~2.1! of ~2.2!. Thus

c~r,z!5AeivtE
0

2p

e2 ik cos~a!z2 ik sin~a!$x cos~f!1y sin~f!%
df

2p

1c.c., ~2.5!

~2.5! represents superposition of all plane waves with wave
vectors kW @5„k sin~a!cos~f!, k sin~a!sin~f!, k cos~a!…#.
Thus all wave vectors have the same magnitudek and the
same inclinationa with the principal direction of propaga-
tion. The anglea can have arbitrary value in the range
0,a,p. One has the Bessel beam propagating along the
positivez axis for 0,a,p/2 and along the negativez axis
for p/2,a,p. Note that~2.5! may also be written as

c~rz!5
Aeivt

2pk sina E exp~2 ik iz2 ikW'•rW !

3d~ki2k cosa!d~k'2k sina!d2k'dki1c.c.,

k25ki
21k'

2 , d2k'5k'dk'df. ~2.6!

~2.6! implies that for the Bessel beam one has superposition
of waves of a fixed longitudinal wave vectorki~5k cosa!
and all possible directions of the transverse wave vectork'

but with a fixed lengthk'5k sina. Here (ki , k' , f) are
cylindrical coordinates in thekW space.

Next we take the fundamental radiation in the form~2.1!
and determine the amplitude of the generated third harmonic
in the slowly varying envelope approximation.

B. THG using Bessel beam

In a nonlinear medium, the polarization oscillating at the
frequency of the TH is given by

P35@x~1!~v3!c31x~3!~v,v,v!c3#. ~2.7!

Here, x~1!~v3!, and x~3!~v,v,v! are, respectively, the linear
and the nonlinear susceptibilities at the frequencyv3. The
amplitudec3 of the TH is determined by the scalar wave
equation

¹2c32
1

c2
]2

]t2
c35

4p

c2
]2

]t2
P3 . ~2.8!

Now, anticipating circular symmetry,~2.8! is written in
cylindrical coordinates as
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~2.9!

P35P3
1ei3vt1c.c., ~2.10!

c35C3
1ei3vt1c.c., ~2.11!

C15Ae2 ik cos~a!zJ0„k sin~a!r…, ~2.12!

v353v. ~2.13!

For the sake of simplicity the susceptibilities dealing with
other nonlinear responses of the medium are suppressed in
~2.9!—assuming that they are small and noninterfering with
the THG. It is also assumed that the THG has a negligible
reaction on the fundamental wave, in that there is no wave-
front distortion, and no depletion of the fundamental due to
it. In this weak-coupling approximation the propagation of
the fundamental in the medium is described by~2.2! and
~2.3!. Further, we assume the following factorized form for
C3

1 :

C3
15a~z!exp„2 ik3cos~b!z…J0„k3sin~b!r…. ~2.14!

Here,a(z) is the slowly varying envelope of the generated
Bessel beam of the TH. The angleb is to be determined from
a condition to be discussed below.

On using: ~i! the ~2.14!, in ~2.9!; ~ii ! the Bessel’s equa-
tion for the zeroth order Bessel function inr; and dropping
terms containing []2a(z)/]z2] compared to those containing
k3[ ]a(z)/]z] and k 3

2a(z), one obtains

2ik3cos~b!J0„k3sin~b!r…
]a~z!

]z

5
4p2v3

2

c2
x~3!~v,v,v!exp$„ik3cos~b!

23ik cos~a!…z%$AJ0„k sin~a!r…%3. ~2.15!

Now, multiplying both sides by@k3r sin~b!J0„k3sin~b!r…#,
and integrating overr ~0,r,`! yields

]a~z!

]z
5
2pv3

2A3

c2i
L tan~b!exp@ i „k3cos~b!23k cos~a!…#z

3x~3!~v,v,v!E
0

`

rJ0„k3sin~b!r…

3@J0„k sin~a!r…#3dr. ~2.16!

Use has been made of Lommel’s result@7# for an integral
over the product of the two Bessel functions of zeroth order.
Solving ~2.16! for the amplitude of the generated third har-
monic at the end face of a sample of lengthL gives

C3
15exp20.5iL @k3cos~b!13k cos~a!#J0„k3sin~b!r…2p

3
v3
2A3

c2i
tan~b!Lx~3!~v,v,v!S sin~u!

u D I, ~2.17!

u50.5L„k3cos~b!23k cos~a!…, ~2.18!

I52pE
0

`

rJ0„k3sin~b!r…@J0„k sin~a!r…#3dr ~2.19!

5
1

~k sina!2
F~T!, T5

k3sin~b!

k sin~a!
. ~2.20!

~2.17! is the result quoted in Ref.@2#2. It represents the so-
lution of ~2.8!, as a Bessel beam of cone angleb. However
the angleb still remains to be determined. Recall that for
large sample lengths, i.e., forL@l/3, the sync function
~sinu/u! has appreciable value only in the range where,

k3cos~b!23k cos~a!50.0. ~2.21!

Thus for large interaction lengths the longitudinal phase-
matching condition~2.21! determines the value of angleb.
The behavior of the TPMI,I~T! is demonstrated in Fig. 1 of
Ref. @2#. In brief, it is shown there that the amplitude of the
Bessel beam of the generated third harmonic is maximum if
the longitudinal phase-matching condition~2.21! andT51,
is satisfied simultaneously. A discussion of the results is fa-
cilitated by characterizing the medium with an anglem ac-
cording to

cosm5
k3
3k

511
Dx~v3 ,v!

@112px~1!~v!#@112px~1!~v3!#
,

~2.22!

Dx~v3 ,v!52p@x~1!~v3!2x~1!~v!#. ~2.23!

The anglem defined by~2.22!, can be modified by a varia-
tion of pressure and temperature, as it is dependent on the
linear susceptibilities of the medium. The transverse ratioT
also depends on the medium properties through the anglem
and on the geometry through the anglea of the fundamental
Bessel beam. Note, that for the negatively dispersive media
both the angles them and theb ~from Eq. ~10! of Ref. @2#!,
are to be equal to or less than the cone anglea of the fun-
damental Bessel beam.

For a positively dispersive medium, definition of the
anglem by the use of Eq.~2.22! is improper ask3.3k. In
this case the condition for longitudinal phase matching can
still be satisfied by choosingb.a. However the transverse-
phase-matching factor is then

2TheK3 in the denominator of the prefactor in Eq.~5! of Ref. @2#
is to be replaced by lengthL in the numerator as in~2.17! above.
The additional phase factor in~2.17! does not contribute to the
intensity of THG. It is made explicit here to demonstrate the
equivalence of~2.17! to ~3.19! derived later in the paper.
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T53H 11F S k33kD
2

21G 1

sin2a J 1/2, ~2.24!

.3 ;a. ~2.25!

We know that the TPMI vanishes forT.3. Thus positively
dispersive media do not support self-phase-matching.

Equation~2.17!, quoted in@2# is the main result of the
Bessel beam representation of the conical beam. It demon-
strates linear dependence on the lengthL of the medium
provided the phase matching is satisfied. In contrast to the
plane-wave situation the phase matching is broken into two
parts. The longitudinal part is represented by the sync func-
tion, and the transverse part is contained in TPMI. We elabo-
rate next on the TPMI.

C. The transverse-phase-matching integral

Before we discuss the calculations of the phase-matching
integral it is instructive to show how it takes into account the
different possibilities of the SPM. Consider the graphic rep-
resentation in Fig. 1 of various parameters defined here and
in Ref. @2#.

Two sections of the cones of the wave vectors of the
fundamental (kW ) and the generated third-harmonic~kW3! are
represented in Fig. 1~a!. The left side of lineN8N9 shows the
longitudinal section cut by a plane containing the principal

axisOZ of the cones. The right side of the lineN8N9 in Fig.
1~a! shows the transverse section~or the side view! of the
cones as seen on a plane perpendicularly to the principal axis
OZ atN, and parallel to the lineN8NN9. In the longitudinal
sectionAA, A8A8 are along the generators of the cone of the
fundamental, andOP is along the generator of the cone of
the third harmonic. The anglea ~b! is the angle of the cone
of the fundamental~TH!. As the pressure of the gas is in-
creased the pointP (OP5ukW3u) in Fig. 1~a! moves along
N8PN andb changes fromb5a, to b50, all the time main-
taining the longitudinal phase-matching condition~2.21!.
Note that the lengthl ON85u3kW u. The anglem characterizing
the medium is also depicted by the right-angled triangle
OMP, such thatl OM5 l ON8. At m50, the pointsM , N8, P
coincide atN8; and atm5a coincidence takes the place ofM
with N8, and ofP with N. In the transverse section the circle
marked TH (f ) is the locus of the tip of the third-harmonic
wave vectorkW3 alongOP ~fundamental wave-vectorkW along
Oa!. Each TH circle is marked by the value of the corre-
sponding ratioT5~k3sinb/k sina!. The f circle and the TH
circle coincide forT51. For the sake of clarity no TH circle
for T,1 lying inside thef circle has been shown.

The different possibilities of transverse-phase matching
which contribute to the TPMI, can be understood with refer-
ence to Figs. 1~a!–1~g! which give the details of the posi-
tions and directions of the transverse components of the
wave vectors of the fundamental and the TH. First, note that,

FIG. 1. ~a! The sections of the cones of the fundamental, and the third-harmonic wave vectors are shown;~b! the details of the positions
of the transverse components for transverse-phase matching discussed in the text are shown;~c!–~g! show examples of transverse-phase-
matching quadrilaterals for some chosen cases~see text!; diagram~e! is relevant for the evaluation of TPMI. The lengths of some vectors are
not exactly to the same scale as implied in the text. This defect may be ignored.
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in Figs. 1~a! and 1~b!, the radial vectors~like vWNQ defined by
the direction pointing fromN to Q, and by a magnitude
equal to the line segmentNQ! of the f circle, represent all
possible directions of the transverse vector
kW'5uk sinaun̂5uk sinau~cosG,sinG! whereG is the angle with
any arbitrarily chosenx axis in the transverse plane. The
radial vectors,vWNP , of the TH circle, similarly, represent the
transverse vectorskW 3

(T)5kW '
(4) of the TH ~see below and Figs.

1~c!–1~g! for notation!.
Now, consider in Fig. 1~a! the T53 at m50 case, when

the point P lies on N8. Recall thatb5a for m50. The
transverse-phase matching, in this case, is represented by the
vectorial equation alongNN8 @see Fig. 1~c!#

kW'
~4!5vWNN853vWNQ5kW'

~1!1kW'
~2!1kW'

~3! . ~2.26!

A similar equation exists for each point on the TH-circle
~T53!, @Fig. 1~a!# implying that for collinear-phase matching
the generated TH is emitted along each plane-wave compo-
nent of the fundamental Bessel beam. Note that there is only
one phase-matching diagram for each point of the TH-circle
~T53!.

Consider now, in Fig. 1~b!, the TH-circle ~1,T,3! for
which kW '

(4)5vWNP . Here, we represent two of the several
cases in which the transverse-phase matching can be
achieved. The first case, is depicted by the set of vectors
vWNa15kW'

(3) , vWNa25kW'
(1) and vWNa35kW'

(2) . The planar quadri-
lateral which is implied by the transverse-phase matching
condition isNa1R1P. The two sides viz.Na1 andNP of the
quadrilateral overlap and correspond to the caseu250 for the
vectors,kW'

~4! andkW'
~3! of Fig. 1~d!. The sidesa1R1 andR1P

are provided by the radial vectorsvWNa3 and vWNa2 of the f

circle and therefore by the wave vectors available in the cor-
responding directions in the Bessel beam. The second case is
depicted by the set of vectorsvWNb15kW'

(3) , vWNb25kW'
(1)

5vWNb35kW'
(2) . The quadrilateral representing the transverse-

phase matching is now seen to beNb1R2P. The sidesb1R2
andR2P are provided by the parallel vectorsvWNb2. Note that
the second case corresponds to the angleu25u2

max between
the kW'

~4! andkW'
~3! @consider, for example, theu2

max case, with
f50 and cW5dW in Fig. 1~e!#. All values of u2 such that
0,u2,u2

max are represented by the position of the radial vec-
tor vWNb1 ~u2! lying betweenvWNa1 and vWNb1 ~u2

max!. It is not
demonstrated in the diagram but it can be stated that the
corresponding quadrilateral for each value ofu2 such that
0,u2,u2

max is always possible by taking two vectors viz.
vWNb2 andvWNb3, not parallel to one another, to complete the
quadrilateralNb1R2P. Note that unlike the collinear-phase-
matching case@which has only one diagram, Fig. 1~c!# one
has contribution to the TPMI from all the diagrams of
transverse-phase matching characterized by 0,u2,u2

max for a
NP5k3sinb. By symmetry, equal contribution also comes
from diagrams with~2p2u2

max!,u2,2p. Thus the phase-
matching integral of the present formalism takes into account
all possible transverse-phase matchings. This is very differ-
ent from the formalism adopted in Ref.@1#. For example it is
not clear from Eq.~7! of Ref. @1# as to how these different
cases are to be taken into account.

A picture similar to Fig. 1 can be drawn fork3.3k. The
point P will then lie above the pointN8 on the lineNN8 to

make b.a. The impossibility of meeting the transverse-
phase-matching condition is noted by the fact that then
NP.NN8 and that it cannot be made up by any vectorial
sum of three vectors each of lengthk sin a which total only
up to a maximum of lengthl NN8.

Next consider the evaluation of the TPMII in ~2.19!
which can be written as

I5
1

~2p!4
E

2`

`

dxE
2`

`

dyE
0

2p

dG1E
0

2p

dG2

3E
0

2p

dG3E
0

2p

dG4exp@ i ~kW'
~1!1kW'

~2!1kW'
~3!1kW'

~4!!rW #,

~2.27!
rW 5 iWx1 jWy.

In going from ~2.19! to ~2.27!, the circular symmetry and a
representation of the Bessel function has been used. ThekW '

( i ),
i51,2,3,4 in ~2.27!, are the four, two-dimensional vectors,
which are projections on thex-y plane@see Fig. 1~b!# of the
four wave vectors viz. the threekW vectors of the fundamental,
and the fourth vector is thekW3 of the generated TH. TheGi is
the angle, in thex-y plane, between the two-dimensional
vectorsrW and thekW '

( i ). Note that the vectorskW '
( i ) ~i51,2,3!

have equal magnitude but arbitrary directions in thex-y
plane. As long as the longitudinal phase matching is not
imposed-kW'

~4! is also arbitrary in direction and length.
In order to estimate~2.27!, divide the four planar vectors

into two groups as shown in Fig. 1~e!

cW5kW'
~1!1kW'

~2! , ~2.28!

dW 5kW'
~4!2kW'

~3! . ~2.29!

Let x and y axes be, respectively, along the vectordW and
perpendicular to the vectordW . The integrations over the four
anglesGi can now be performed by redefiningG15u1 to be
the angle betweenkW'

~1! and kW'
~2! ; G25u2 to be the angle be-

tweenkW'
~4! andkW'

~3! ; G35u35f, to be the angle between the
vectorcW anddW . The angleG45u4 can be represented by the
rotation ofcW anddW vector system~intact! with respect to any
arbitrary direction in thex-y plane. Since this last rotation
produces similar systems, an integration over theu4 angle is
readily performed, which yields the value 2p. Also perform-
ing the integrations for thex coordinate and they coordinate
there results twod functions due to the infinite extension of
the medium in the two directions. Thus

I5
1

~2p!3
E du1E du2E df 2p

3d@c cos~f!2d#2pd@c sin~f!#, ~2.30!

c52k sin~a!sin~0.5u1!, ~2.31!

d25„k3sin~b!…21„k sin~a!…222k3k sin~a!sin~b!cosu2 .
~2.32!

Now performing the integration over the anglef using the
secondd function, gives
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I5
1

2p E du1E du2d~c2d!c21. ~2.33!

Finally using the remainingd function to perform the inte-
gration over the angleu1, contained in the length of the
vectorc one gets

I5
1

2p E
0

2p

du2@~2k sin~a!sin~0.5u1!

3k sin~a!cos~0.5u1!#
21. ~2.34!

Since,d5c52k sin~a!sin~0.5u1!

I5
1

p E
0

p 1

dA~k sina!220.25d2
du2 . ~2.35!

In the last step, use has been made of the equal contributions
from 0 to p, and fromp to 2p. Note that, one has to be
careful with the upper limit of the integral in~2.35!. The
upper limit isp, for T<1, e.g., Fig. 1~f! for T51, and Fig.
1~g! as a representative case forT,1. For,T.1, the upper
limit is u25u2

max, see in Fig. 1~b! the quadrilateralNb1R2P.
u2
max may be determined by the condition that the pojection
of kW'

~1! and kW'
~2! perpendicular todW becomes zero. This pro-

jection is exactly the term under the square root in~2.35!.
Thus atu25u2

max

4~k sina!22d2~u25u2
max!50.

The integrand in~2.35! gives a large contribution atu250
for 0,T,3. It develops another region which gives a large
contribution to the integral at

~ i! u25p for ~A221!<T,1

~ ii ! u25u2
max with cos~u2

max!5@~T223!/2T#

for 1,T<3.

Note also that atT51, ~2.35! is a divergent integral, which
essentially stems due to the infinite extension of the Bessel
beam in the transverse directions. The overlap is thus maxi-
mum atT51. The divergence atT51 need not be disturbing,
as such divergence is seen in Lommel’s formula too. Lom-
mel’s formula and the integral~2.19! represent, respectively,
the effective transverse areas over which the product of the
Bessel beam with itself and of the cube of the fundamental
with the generated third harmonic, have a nonzero value. The
transverse-phase-matching diagram forT51 is depicted in
Fig. 1~f!. Note that, because of the degeneracy in length,
each point of the TH circle gets a contribution from every
other point of thef circle. Figure 1 of Ref.@2# has been
obtained from~2.35! by using different values of its param-
eters.

It will be helpful here to recapitulate the results of Ref.@1#
along with those of the above expressions. The self-phase-
matching case ofb>a/3, for small inclinationa of Ref. @1#
corresponds to the divergence atT51 in the present formal-
ism. Similarly their collinear-phase-matching case, where
b>a corresponds here to the divergence atT>3. The two
divergences correspond to the diagrams 1~f! and 1~c! in Fig.

1, which demonstrates the ways the transverse-phase-
matching condition is satisfied in these two cases. Theb50
case of@1# is obtained when the value ofm reaches its cutoff
value a. We will use the result~2.17! in Sec. IV. In the
following section we are concerned with the derivation of
~2.17! from an expression which is valid beyond the slowly
varying envelope approximation used in Sec. II B.

III. AN EXACT TREATMENT
OF THE THIRD-HARMONIC GENERATION

BY BESSEL BEAM

We consider the semi-infinite half-space~0,r,`, 0,z
,`! containing the nonlinear medium, and as in Sec. II,
work within the scalar wave equation. Taking as usual the
refractive index for the third-harmonic wave to ben3, and
~2.10–2.13! the ~2.8! gives

¹2C3
11n3

2
v3
2

c2
C3

152Pc13
, ~3.1!

n3
25@114px~1!~v3!#, ~3.2!

P5
4pv3

2x~3!~v,v,v!

c2
. ~3.3!

In order to solve~3.1! consider the Fourier transform of
both sides. We take

C3
1~XW !5E Ĉ3~KW !e2 iKW •XWdKW , ~3.4!

C13
~XW !5

1

~2p!3
E g~KW !e2 iKW •XWdKW , ~3.5!

where

g~KW !5E eiK
W
•XW C13

~XW !dXW . ~3.6!

The Ĉ3(KW ) is determined from the algebraic relation in the
KW space. We get

Ĉ3~KW !5
Pg~KW !

~2p!3~K22k3
2!
, k3

2c25n3
2v3

2. ~3.7!

For the circularly symmetricc1, one can write

g~KW !5E
2`

1`

dz ei ~K
W

i23kW i !zE
0

`

2pr dr@J0~k'r!#3J0~K'r!,

~3.8!

5
2pd~KW i23kW i!

~k'!2
F~R!, ~3.9!

F~R!5E
0

`

2pr̄ dr̄@J0~ r̄ !#3J0~Rr̄ !, ~3.10!

r̄5k'r, R5
K'

k'

. ~3.11!
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Thus

Ĉ3~KW !5
Pd~K i23ki!

~2p!3~k'!2
F~R!

K22k3
2 . ~3.12!

~3.12! gives the amplitude of the forced wave in the nonlin-
ear medium for the modeKW . The amplitude exists for all
modes for whichg(KW ) is nonzero. Thus the amplitude~3.12!
exist in the region of space 0,z,L in which the medium
pervades. The corresponding amplitude is determined from
~3.4!. However, the amplitude of only such modes is ex-
pected to grow, whose mode parameterKW lies on the energy
shellK25k 3

2. For such modes~3.12! has singularity. A con-
venient way to take account of the singularity is to convert
~3.12! into 0/0 form by adding the solution of the homoge-
neous part of~3.1!, which exists only on the energy shell.

The modified expression for the amplitude inK space, valid
for all mode parameterKW , and that which satisfies the bound-
ary condition in the ordinary space

C3~XW !uz5050 ~3.13!

is given by

Ĉ3~KW !5
PF~R!

~2p!3~k'!2 Fd~K i23ki!2d~K2k3!

K22k3
2 G .

~3.14!

The corresponding spatial amplitude is obtained by using
~3.14! in ~3.4!. Taking advantage of the circular symmetry,
the result can be written as

C3
1~XW !5

PA3

~2p!2~k'!2
E
0

`

K'dK'F~R!J0~K'r!F2pd~K i23ki!e2 iK iz22pd~K2k3!e
2 iz~k3

2
2K'

2
!1/2

@K'
22~k3

32K i
2!#

G . ~3.15!

While writing ~3.15! use has been made in replacingK i ac-
cording to the twod functions. The first term in the numera-
tor in the square bracket admits all values ofK' , irrespective
of the fact that the corresponding mode will or will not be
supported by the medium. The second term on the other hand
does the same but forK i

25k 3
22K'

2 . The combination of the
two terms in~3.15! acts in such a way that at large distances
only such forced modes will grow which are supported by
the free wave solution. This may be demonstrated by the
following modification of the square bracket; we may write
the square bracket as

2pFe23ik iz2e2 iz~k3
2
2K'

2
!1/2

i ~@k3
22K'

2 #1/223ki!
G 1

F K i
22~k3

22K'
2 !

i ~@k3
22K'

2 #1/223ki!
G .
~3.16!

So in the limit of largez and K2→k 3
2 ~3.16! implies in

addition to a phase factor the following expression:

~2p!2z@unity if ~k3
22K'

2 !1/2→3ki#
1

@2iK i#
, ~3.17!

which could also mean to imply

K'→~k3
22K i

2!1/2, and K i→3ki . ~3.18!

Making use of these expressions for largez, ~3.15! can be
simplified. It gives, along with the phase factor mentioned
above, the result

C3
1~X!5PA3

K'

k'
2 ~2iK i!

ze2 iK izJ0~K'r!F~R!.

~3.19!

Now, if one takes

K i5k3cos~b!; K'5k3sin~b!; k'5k sin~a!; z5L
~3.20!

~3.19! becomes identical to the slowly varying envelope ap-
proximation result~2.17!. The expression~3.16!, however, is
valid for all lengths of the sample. It is readily checked that
the experiments of Ref.@1# can be analyzed using the slowly
varying envelope result~2.17! of Sec. II or~3.19! above.

In the next section we use~2.17! to discuss the THG by
the multiple Bessel beam incident fundamental.

IV. MULTIPLE BESSEL BEAMS

The numerical results of~2.17! for a model system giving
a single Bessel beam, are discussed in Ref.@2#. The model
chosen has the ring slit with radiusa50.45 cm and the width
da50.1 mm, the focal length of the convex lens is assumed
to be 10.0 cm andl350.355m. The Bessel beam emerging
from such a model system is derived in the Appendix. We
use~A8! to represent the input Bessel beam. Figure 2 of Ref.
@2# shows the total detected power~uE3u

2! of the third har-
monic as a function of pressure~proportional to$12cosm%!
normalized suitably. The detected power~uE3u

2! is calculated
using ~2.17! according to

uE3u252pE
0

a

r druC3
1u2.

It is assumed to be falling on a circular detector placed cen-
trally and perpendicularly to thez axis at the end of the
sample. The radius of the detector isa.k3sin~a!, where
b5a is the largest cone angle which the generated Bessel
beam of the third harmonic can have at collinear-phase-
matching conditions~m50.0!, which occurs at very low
pressures~because in the vacuum there is no difference in the
velocities of the fundamental and the third-harmonic waves!.
At low pressures there are fewer atoms in the cell, which
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produce small amplitudes of the generated third-harmonic
wave. As the pressure is increased the phase mismatch
Dx~v3,v! becomes significant, the collinear-phase matching
can no longer be satisfied. It is in this domain that the ad-
vantages due to the possibilities of self-phase matching set
in. Simultaneous satisfaction of the longitudinal and the
transverse-phase matching becomes possible—and the
amount of the third harmonic generated depends on the ef-
fective area over which there is significant overlap of the
transverse variations of the cube of the fundamental and the
third-harmonic Bessel beam. The maximum occurs at
k3 sin~b!5k sin~a! at which

tan~b0!5~1/3!tan~a!.

On further increase of the pressure the effective area de-
creases but does not vanish. The decrease is controlled by the
tan~b! and by the sharp cutoff atm.a when I50.

The values of the parametersT,b,I along with the nature
of phase matching occurring at different values of the me-
dium anglem for a single Bessel beam are summarized in
Table I, for ready reference.

We consider now how by having more than one Bessel
beam in the input radiation one can have a broader width like
that shown in Fig.~3! of Ref. @2#.

A. Third-harmonic generation using two Bessel beams

Consider two thin-ring slits of radiia1 anda2 (a1,a2).
Their widthsda1 andda2 are very small compared to their
radii. The two radii can be arbitrarily close to one another.
For definiteness, let these two ring slits generate distinct
Bessel beams, of cone anglesa1 anda2, ~a1,a2!, respec-
tively. These Bessel beams overlap in the nonlinear medium
generating the third harmonic. The fundamental field in the
medium is represented by

C1
15eivt@A1e

2 ik cos~a1!zJ0„k sin~a1!r…

1A2e
2 ik cos~a2!zJ0„k sin~a2!r…#, ~4.1!

A1 andA2 are the amplitudes of the two Bessel beams. These
are determined, as discussed briefly in the Appendix, by the
field illuminating the ring slits, and the widths of the ring
slits. The generated third-harmonic amplitude in the long-
sample limit is given by

C3
15

2pv3
2

ic2
x~3!~v,v,v!j~z!, ~4.2!

j~z!5z@2pA1
3I 1J~b!d~y1!12p3A1

2A2I 2J~b!d~y2!

12p3A1A2
2I 3J~b!d~y3!12pA2

3I 4J~b!d~y4!#,

~4.3!

J~b!5tan~b!J0„k3sin~b!r…e2 ik3cos~b!z,

y15k3cos~b!23k cos~a1!,

y25k3cos~b!22k cos~a1!2k cos~a2!,
~4.4!

y35k3cos~b!2k cos~a1!22k cos~a2!,

y45k3cos~b!23k cos~a2!,

I 15E
0
2pr dr J0

3
„k sin~a1!r…J0„k3sin~b!r…, ~4.5a!

I 25E
0

`

2pr dr J0
2
„k sin~a1!r…

3J0„k sin~a2!r…J0„k3sin~b!r…, ~4.5b!

I 35E
0

`

2pr dr J0„k sin~a1!r…

3J0
2
„k sin~a2!r…J0„k3sin~b!r…, ~4.5c!

I 45E
0

`

2pr dr J0
3
„k sin~a2!r…J0„k3sin~b!r….

~4.5d!

It is clear from the above that a photon of the generated
third harmonic can come from four different combinations of
the three photons of the fundamental beams:~1! all three
photons come from thea1 beam;~2! all three photons come
from thea2 beam;~3! one photon comes from thea2 beam
and two photons come from thea1 beam; and~4! two pho-
tons come froma2 beam and one photon comes from thea1
beam. Consequently there are four different longitudinal
phase-matching conditions represented by the fourd func-
tions in ~4.3!. Thus the generated third-harmonic field can be
in a superposition of four distinct Bessel beams, their angles
being determined by the prevailing conditions in the sample.
In order to develop a scheme to label the four distinct beams,
recall that for the single thin-ring-slit case, a Bessel beam is
produced when

TABLE I. Single Bessel beam.

Medium
angle

m

Transverse
ratio
T

Output
angle

b

Phase-Matching
integral

I

Nature of
Phase-Matching

CP/SP

0 3 a Þ0 Collinear-
Phase Matching

a 0 0 Þ0 Self-
Phase Matching

m0 1 b0 maximum Self-
Phase Matching

54 2321THEORY OF THIRD-HARMONIC GENERATION USING BESSEL . . .



0<m<a. ~4.6!

From ~4.6! and from Table I it is seen that the output radia-
tion has a separate Bessel beam for each input Bessel beam
corresponding to the anglesa1 anda2. In addition there are
two other anglesa~3! anda~4! defined by

3 cos~a~3!!52 cos~a1!1cos~a2!, ~4.7!

3 cos~a~4!!5cos~a1!12 cos~a2!, ~4.8!

which determine the additional two Bessel beams in the out-
put radiation. The cone anglesb1, b2, b3, andb4 of the four
Bessel beams which constitute the output radiation are deter-
mined from the respective longitudinal phase-matching con-
ditions, and are given by

cos~b1!5
cos~a1!

cosm
,

cos~b2!5
cos~a~3!!

cosm
,

~4.9!

cos~b3!5
cos~a~4!!

cosm
,

cos~b4!5
cos~a2!

cosm
.

Using the eight angles, one has the following possibilities
between the input and output Bessel beams in the case of the
two thin-ring slits:
~a! four Bessel beams, withb1, b2, b3 andb4 for 0,m,a1;
~b! three Bessel beams with anglesb2, b3, b4 for
a1,m,a~3!;
~c! two Bessel beams with anglesb2, b4 for a~3!,m,a~4!;
~d! one Bessel beam with angleb2 for a~4!,m,a2; and
~e! no Bessel beam fora2,m.

The amplitude of each Bessel beam component in the
output is determined by the corresponding TPMI viz.
I 1 ,I 2 ,I 3 ,I 4 . Figure 2 shows the behaviors ofI 1, I 2, I 3, and
I 4 for the model systema150.45 cm, a250.55 cm,
da15da250.01 cm, f510.0 cm, and for various values of
the pressures. The double peaks inI 2 and I 3 are easily un-
derstood to be the two alternate ways the overlap integral can
acquire a local maximum.

Figure 3 demonstrates the intensity of the generated TH
recorded by the detector placed atz510.0 cm. The curvesa
andb correspond to the situations when eithera1 or a2 input
Bessel beam is only present. The curvec represents the gen-
eration of the third harmonic when thea1 and a2 Bessel
beams are simultaneously present in the sample. This Fig. 3
clearly demonstrates the wide pressure range over which a
significant third harmonic can be generated by the use of
multiple Bessel beams.

B. Three and more than three input Bessel beams

If one uses three ring slits in the front focal plane one has
three Bessel beams interacting simultaneously with the non-
linear medium. The third-harmonic photon can now be
formed also by the combination of one photon each from the

three slits. This~11111! combination of the photons of the
fundamental is in addition to the~211! and~310! combina-
tions encountered earlier in the two slit case. For the three
slits case these three combinations add up to give ten inde-
pendent values of the cone angleb of the output Bessel beam
components. Consequently the harmonic radiation in the
three slits case is a superposition of ten Bessel beams. We
leave the presentation of their detailed calculations for future
experimental papers.

Note, however, that on increasing the number of slits
from one to two, one encountered an increase in the toler-
ance width of the pressure~compare Fig. 3~here! and Fig. 2
of Ref. @2#!. Such an increase in the tolerance width does not
occur in going from two to three slits if the third slit is
introduced at an intermediate radiusa3 such that
a1,a3,a2 . This is because the width of the curve in Fig. 3

FIG. 2. The behavior of the four transverse-phase-matching in-
tegrals as functions of the pressure of the gas for a model system
containing two Bessel beams in the input radiation are shown.

FIG. 3. The intensity of the third harmonic detected in the case
of the two Bessel beams is plotted. Note the wide width of the curve
when both Bessel beams are present.
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is determined by the minimum and the maximum radii of the
multiple ring slit system, and the overall interference effects
of the superpositions of the multiple Bessel beams in the
generated third harmonic. In the next section a model is dis-
cussed to obtain the radiation from a broad-ring slit.

C. The broad-ring slit

In the experiment of Ref.@1# a broad-ring slit was in use.
One may represent a broad-ring slit comprising of a large
number of thin-ring slits, lying side by side in the broad-
annular region defined by an inner radiusa and outer radius
b. The field generated by such a broad-ring slit may be rep-
resented by an integral of the following type~see the Appen-
dix!

C1
15AE

a

b

2pr dr expS 2 ik
f

L zD J0~krr/L !, ~4.10!

A5
A
ilL̄

, ~4.11!

L25 f 21r 2, ~4.12!

r25x21y2, ~4.13!

L̄ is the average distance of the broad-ring aperture from the
center of the lens;f is the focal length of the lens,l is the
wave length of the fundamental radiation, andA is a con-
stant related to the amplitude of the radiation which illumi-
nates the broad slit, and the geometry, as discussed briefly in
the Appendix.

The generated third harmonic in the long-sample limit is
then given by the expression similar to~4.2! where the func-
tion j(z) is replaced by

jc~z!5zF ~2p!4E
a

b

r 1dr1E
a

b

r 2dr2E
a

b

r 3dr3J~b!

3d$k3cosb2k f ~L1211L2211L321!%

3E
0

`

r dr J0~k3r sinb!J0~krr 1 /L1!

3J0~krr 2 /L2!J0~krr 3 /L3!G . ~4.14!

The difference between~4.14! and ~4.2! is an additional
effect. This is revealed by noting that in~4.14!, there may be
several combinations of slits with different radii,r 1 ,r 2 ,r 3
which simultaneously satisfy a longitudinal phase-matching
condition corresponding to a particularb. Each one of these
combinations has a different value of the transverse-phase-
matching integral. Physically this additional effect to allow
phase matching for a given value ofb arises because the
three photons can come not only from different azimuthal
angles but also from several different values of the inclina-
tion to thez axis. The analytical evaluation of~4.14! has not
been possible. We have numerically evaluated~4.14! by
breaking the broad slit of Ref.@1# in to 11 slits lying in the
annular region defined bya50.45 cm,b50.55 cm. Each slit

is assumed to be of width 0.01 cm, and is placed with its
center at the marker 0,1,2,3,4,5,6,7,8,9,10 separated by 0.01
cm. In this case there are as many as 286 values ofb. In
general forn slits one hasN[5n(n11)(n12)/6] distinct
combinations ofr 1 ,r 2 ,r 3 leading to the different values ofb,
some of which may be degenerate, depending on the value of
the three radii. The intensity of the detected third harmonic is
plotted in Fig. 3 of Ref.@2#. In Fig. 4 we accommodate the
three cases viz. the single-slit, the two-slit, and the broad-slit
~represented by 11-slit! configurations considered above. The
unnormalized power detected at the end face of the sample of
length 10 cm placed symmetrically in a region where the
approximate Bessel beam is formed on the optical axis, is
plotted in Fig. 4. For the sake of clarity each curve is multi-
plied by a suitable factor mentioned alongside each curve.
The width of the broad-slit configuration is wider than that
for a single-slit case but is narrower with respect to the two
slit configuration. The reason for the reduction in the width is
the effect of the intereference of the multiple Bessel beams
of the TH produced in the broad-slit case. The intereference
has much less detrimental effect for the two-slit configura-
tion. The width is more but the power is much less in the
two-slit case compared to the broad-slit case

Lastly it is of interest to note the results of the present
theory when the radii of the ring slit or the focal length of the
lens is varied. By decreasing the radii and/or increasing the
focal length one modifies the anglea to smaller values. This
implies that the pressure of the gas at which the maximum
THG may occur decreases. To demonstrate this we have
plotted in Figs. 5 and 6 the three cases as in Fig. 4. Figure 5
shows the effect of increasing the focal length of the lens
compared to that in Fig. 4; and Fig. 6 shows the effect of
decreasing the radii of the annular slit with respect to those
in Fig. 4. As mentioned above in both cases the
pressures—at which the maximum occurs—decreases and
the overall power is reduced. It remains to be seen if the
experimental results would follow the same pattern.

In conclusion we have given besides the details of the

FIG. 4. Curves are the same as in Figs. 3 of Ref.@2# and those
of Fig. 3 of this paper plotted with suitable multiplicative factors to
be accommodated in the same graph. This is done to compare the
various features of the curves.a50.45,b50.55, andf510.0.
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theory of the THG by Bessel beams an important result that
the width of the pressure range can be controlled by control-
ling the radial distance between two-ring slits and filling the
internal space either by a single-ring slit in between, or by a
number of slits. There is much scope for improvement of the
present formalism. For example, it is important to take into
account the curvature of the wave front in the actual experi-
ments of Ref.@1#. The curvature effects are expected to be
important for shorter focal lengths where the THG is pre-
dicted to be higher by the present formalism.
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APPENDIX

The derivation of the Bessel function solution from a ring
slit placed at the front focal plane of a convex lens is not
new. It is included here for completeness and ready refer-
ence. Let the disturbance at the ring slit, in the planeSx1y1
5(x1 ,y1 ,z5z1) ~see Fig. 7! be represented by

u~x1 ,y1 ,z1!5Ad~x1
21y1

22a2!exp~2 ikz1!. ~A1!

The disturbance at the planeSx2y2
5(x2 ,y2 ,z5z11 f ), just

to the left of the lens, as shown in Fig. 7, is given by the
scalar diffraction theory as

u~x2 ,y2 ,z2!E E
Sx1y1

1

il
u~x1 ,y1!

exp~ ikr 21!

r 21

3cos~nW •rW21!dx1dy1 . ~A2!

On using

~x1 ,y1!5a~cosf,sinf! ~A3!

L25a21 f 2, cos~nW •rW21!.1 ~A4!

r 21
~a!.LF11

x2
21y2

2

2L2 2
2a

2L2 $x2cosf1y2sinf%•••G
~A5!

~A2! gives

u~x2 ,y2 ,z2!5
exp~ ikL!

ilL E E
Sx1y1

u~x1 ,y1!a da df

3expF ik x2
21y2

2

2L G
3expF2

ika

L $x2cosf1y2sinf%G .
~A6!

The disturbance on the planeSx3y3
5(x3 ,y3 ,z5z11 f1D)

to just right of the lens is given in the well-known manner by

FIG. 5. Curves multiplied with indicated factors for the single-,
double-, and 11-slit cases for the model~same as that in Fig. 4!, but
with f550.0 are shown.

FIG. 6. Curves multiplied with indicated factors for the single-,
double-, and 11-slit cases for the modela50.1 cm,b50.15 cm,
f510.0 cm, with an individual slit50.005 cm are shown.

FIG. 7. The ring slit and lens arrangement used for producing a
Bessel beam or a superposition of them is shown.

2324 54SURYA P. TEWARI, H. HUANG, AND R. W. BOYD



replacingx2→x3 , y2→y3 and introducing the modification
of the curvature to the wave front due to the lens. We have

u~x3 ,y3 ,L1D!5
exp@ ik~L1nD!#

ilL

3E E
Sx1y1

u~x1 ,y1!a da df

3expF2 ik
x3
21y3

2

2 f GexpF2
ika

L $x3cosf

1y3sinf%GexpF ik x3
21y3

2

2L G . ~A7!

HereD is the thickness of the lens andn is the refractive
index of the material of the lens. The curvature of the wave
front in the plane x3 ,y3 may be ignored as long as

(a/ f )2!1. Let the disturbance to the right of the plane
z35L1nD be such a solution of the scalar wave equation
which preserves the angular spectrum of the plane-wave so-
lution, as represented by the disturbance on thex3 ,y3 plane,
then in the region where the waves overlap one may write,

u~x,y,z!5
exp@ ik~L1nD!#

ilL E E
S~a,f!

Aa da df

3expS 2 ik
f

L zD
3expF2 i

ka

L $x cosf1y sinf%G . ~A8!

This has been used as the incident fundamental Bessel beam
in the text for small values ofda and constantA.
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