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Theory of third-harmonic generation using Bessel beams, and self-phase-matching
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Taking Bessel beam§J, bean) as a representation of a conical beam, and a slowly varying envelope
approximation(SVEA) we obtain the results for the theory of third-harmonic generation from an atomic
medium. We demonstrate how the phenomenon of self-phase-matching is contained in the transverse-phase-
matching integral of the theory. A method to calculate the transverse-phase-matching integral containing four
Bessel functions is described which avoids the computer calculations of the Bessel functions. In order to
consolidate the SVEA result an alternate method is used to obtain the exact result for the third-harmonic
generation. The conditions are identified in which the exact result goes over to the result of the SVEA. The
theory for multiple Bessel beams is also discussed which has been shown to be the source of the wide width
of the efficiency curve of the third-harmonic generation observed in experinj&it850-294{6)00308-3

PACS numbd(s): 42.65.Ky, 32.80.Wr, 33.80.Wz

I. INTRODUCTION fluctuations in a refractive index compared to the beams pro-
duced by a single narrow ring slit or even a single broad ring
Recently Glushko, Kryzhanovsky, and Sarkisyan haveslit. The case of representing a single broad ring slit by a
demonstrated 1] the phenomenon of self-phase-matchingseries of ring slits placed side by side concentrically is dis-
(SPM) for an efficient third-harmonic generatigdHG) in  cussed in detail using the approximate representation consid-
atomic vapors. They employ a ring pump geometry. The ringered in the Appendix. The effects of reducing the radii of the
slit! is illuminated by an expanded beam from a Nd:YAG ring slit and the focal length of the lens employed are con-
laser. The emanating radiation, focused into a cell containingidered at the end.
atomic vapors, generates a third harmofil¢d) which is The use of Bessel beams is justified by two observa-
observed at the end of the sample. The observed THG hdions: (1) that the Bessel beam solution of the scalar wave
been shown to be efficient compared to that due to a disclik€quation is a superposition of infinite plane waves with their
source of the same power of the incident fundamental radiadave vectors parallel to the generators of a cfferepre-
tion. Besides this increase in efficiency the remarkable feaS€Nting an ideal conical beam; and note that it is such a
ture of the SPM lies in the large tolerance it accepts in theUPerposition in which the authors of R¢l] analyze the
fluctuations of the refractive index mismatch between the?®NCept of SPM(2) that_ the m_ethod of_gene_ra’glng the cont-
fundamental and the TH. This mismatch may be due to th&al fun_dqmental radiation using the ring S“.t n Réﬂ. 1S
variation of pressure, temperature, or Kerr nonlinearity. Th very similar to the method used by Durnin, Miceli, and

large tolerance in the refractive index also widens the free—Eberly [4] to demonstrate the realizability of the Bessel

~beam. Compare the similarities and the dissimilarities of the

quency spread of the fundamental that can be usgd to' IM&ns plus ring slit arrangement used in Rdfl and that used
the TH. In short the concept of SPM has important implica-, paf [4] (also see the Appendixin Ref. [1] the wider
tions. _ o width (=10 000um) of the ring slit and its nonplacement at

In a rapid communicatiop2] we have reported a theory e front focal plane of the lens may be noted. In RRéf.the
based on an idealized representation of the conical beatprpng slit is of narrower width(=10 xm), and it is placed at
used in Ref[1]. The theory explains salient features of the ihe front focal plane of the lens. This ensured in Réf.the
THG experiments of Ref.1]. In this paper we give the de- pjane-wave fronts in the image space for the field generated
tails of this theory. We justify below the use of the Bessel,y 4 point on the ring slit. Thus the dissimilarities of the
beams in the theory; explain the slowly varying enVEIOpearrangements ifi1] compared to that ifi4] create curved-
approximation(SVEA) used to obtain the reported results in \5ve fronts in the focal region of the arrangement[bf
[2]; and further consolidate the SVEA results by derivingpowever the similarities suggest that the beams[ih
them by an alternate procedure. We then use the theory t8;4__in first approximation—be taken to be a Bessel beam,

consider THG using a double-conical beam, to demonstratg; rg|ated to the Bessel beam of the type demonstrated by
that the resulting TH is a superposition of four Bessel beamSDurnin, Miceli, and Eberly[3,4].

and that a double-conical beams system can tolerate wider The theoretical results presented in R&f on the basis
of the J, beam show variations of the intensity of the gener-
ated TH, with the pressure of the atomic vapor, similar to the
The ring slit used in Ref[1] can be assumed to have a sharp one observed in the experiments. The theory also shows the
inner radius and diffused outer radius determined by the fallingvariation of the angular spread of the generated TH with
Gaussian intensity of the expanded Nd:YAG beam. pressure in that at low pressure the TH is widely spread,
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coming all along the directions of the fundamental radiation. w?

As pressure increases the angular spread narrows and the kzz? [1+47x P (w)]. 2.9

intensity increases. Finally at a critical value of the pressure

the angular spread reduces only to a line along the symmetry

axis. The intensity vanishes all together for pressures beyond”(w) is the linear susceptibility of the medium for light of

it. the angular frequency. c is the velocity of light in vacuum.
This paper is organized as follows. In Sec. Il A we reca-« in (2.1) is the angle of the cone which has its generators

pitulate some properties of Bessel beams, in Il B we give thgparallel to the infinity of infinite-plane waves that superpose

details of the slowly varying envelope treatment for the gento produce the solutiof2.1) of (2.2). Thus

eration of the TH by a Bessel beam of the fundamental ra-

diation. In Sec. Il C it is demonstrated how the transverse- do

phase-matching is taken into account by the transversew(p,z):Aeiwtf ik coga)z—ik sin(@){x cog ) +y sin($)}

phase-matching integralTPMI). A method to evaluate the 2m

TPMI is described. tec 2.5
Section Il contains exact treatment not presente{in o )

for a THG by a Bessel beam. The results of this section are

valid, also, for the small sample length. In the limit of the (2.5 represents superposition of all plane waves with wave

long sample length, the expression of Sec. Il is recovered. vectors k[=(k sin(e)cog¢), k sin(a)sin(¢), k coga))].
Section IV discusses the multiple Bessel beam situationThus all wave vectors have the same magnitkdend the

We first describe the two-ring slit produced double-Besselsame inclinatione with the principal direction of propaga-

beam configuration. The behavior of the cone angles of théon. The anglea can have arbitrary value in the range

resulting four Bessel beams is predicted. In Sec. IV B thdd<a<w. One has the Bessel beam propagating along the

case of three Bessel beams is briefly discussed, wherein opesitive z axis for 0<a<<w/2 and along the negative axis

encounters as many as ten Bessel beams in the generated Tét. n/2<a<w. Note that(2.5) may also be written as

Section IV C, discusses the case of a broad ring slit similar to

the one used in Ref1]. It is found here that intensities of the

2

e

i ot

ger)er_ated TH are highfar a_nd the_width of the toleranc_e inthe y(pz)= 5 Ake i f exp(—ik,z— ”Zl p)
variation of the refractive index is large. Lastly we discuss 7K Sina
the results due to the variation of the ring-slit radii and the ; 2

X 8(k,—k ok, —k +c.c.
focal length of the lens used. (ki —k cos)o(k, —k sina)dk, dig +c.c.,

21,20 1.2 2 _
Il. THE SLOWLY VARYING ENVELOPE FORMALISM k=kj+ki, d%, =k dk.d¢. (2.6

FOR BESSEL BEAMS

Before we develop the slowly varying envelope formal- (2.6) implies that for the Bessel beam one has superposition

ism for the Bessel beams we recapitulate some properties 8F waves of_a f'X?d angltudlnal wave vectéf(=k cosz)
the Bessel bear8—6]. and all possible directions of the transverse wave vector

but with a fixed lengtrk, =k sina. Here ;, k,, ¢) are
) cylindrical coordinates in th& space.
A. The Bessel beam solution Next we take the fundamental radiation in the fofn1)
Durnin[3] pointed out the existence of the circularly sym- and determine the amplitude of the generated third harmonic
metric solutiony(p,z) involving the Oth order Bessel func- in the slowly varying envelope approximation.
tion, Jg,

w(p,z):Ae—ik cos{a)ZJO[k sin(a)p]ei‘”tJrc.c., B. THG using Bessel beam
(2.1 In a nonlinear medium, the polarization oscillating at the
p2=x2+y?, frequency of the TH is given by
of the scalar wave equation; Ps=[xY(w3) 3+ x3 (0, 0,0)*]. 2.7)
1 P 4 52 Here, YM(w5), and Y®(w,w,w) are, respectively, the linear
V2y— 252 = 2 a2 P, and the nonlinear susceptibilities at the frequeagy The
amplitude ; of the TH is determined by the scalar wave
(2.2 equation
V2= - + - + ”
=2t o2t 7,
ox= - oyT 9z 12  4r P

Vzlﬂs—gzﬁ Y3=27 72 Ps- (2.9
andz is called the principal direction of propagation. For a
linear medium one has
Now, anticipating circular symmetry(2.8) is written in
P=x"Y(w)y, (2.3)  cylindrical coordinates as
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# 19 1 P P o W3 =exp—0.5L[kscod B) + 3k cog a)]Jo(KsSin( B)p)2m

t——t 5=+ —+—=|¥;
ap? pap plag? a2 2| d

ZA3 sin( 6)
4m03 | Xw032i tar(B)Lx<3>(w,w,w)< n; )I, (2.17
=2 !
ng 0=0.5_(kscog B) — 3k coq a)), (2.18

3
XM (03) V3 + X (0,0,0)¥77],

c? »
29 =27 [ "pdofkisin B 3o(k sint)p)*dp (219
P;=P;e%“'+c.c, 2.1

S - -1 km, TlEnB) (2.20

w=V;e34cc., (2.11) (k sina) : k sin(a) ’

W =Ae K %07 0(k sin(a)p), (212 (2.1 is the result quoted in Ref2]. It represents the so-
lution of (2.8), as a Bessel beam of cone angleHowever
w3=3w. (213 the anglep still remains to be determined. Recall that for

large sample lengths, i.e., fdr>\/3, the sync function

For the sake of simplicity the susceptibilities dealing with ﬁ%inela) has appreciable value only in the range where,

other nonlinear responses of the medium are suppressed
(2.9—assuming that they are small and noninterfering with
the THG. It is also assumed that the THG has a negligible
reaction on the fundamental wave, in that there is no wave- i ) o
front distortion, and no depletion of the fundamental due toThus for large interaction lengths the longitudinal phase-
it. In this weak-coupling approximation the propagation of Matching condition(2.21) determines the value of angfe

the fundamental in the medium is described &2 and The behavior of the TPMI(T) is demonstrated in Fig. 1 of

(2.3). Further, we assume the following factorized form for Ref.[2]. In brief, it is shown there that the amplitude of the
o8 Bessel beam of the generated third harmonic is maximum if

the longitudinal phase-matching conditi¢h.21) and T=1,
\Ifg=a(z)exp(—ikgcos(ﬂ)z)Jo(kgsin(ﬁ)p). (2.19 is satisfied simultaneously. A discussion of the results is fa-
cilitated by characterizing the medium with an angleac-
Here,a(z) is the slowly varying envelope of the generated cording to
Bessel beam of the TH. The angsds to be determined from

kscoq B)— 3k coga)=0.0. (2.21)

a condition to be discussed below. ks Ax(ws, o)
On using: (i) the (2.14), in (2.9); (ii) the Bessel's equa- cou=5-=1+ &) ) )
tion for the zeroth order Bessel function gin and dropping 3 [1+2mx " (w)][1+2mx (w3)%2 22
terms containing §°a(z)/dz?] compared to those containing '
ks[ 9a(z)/9z] andk3a(z), one obtains
Ax(wz,0)=2axP(wz) - xP(0)]. (223
. . da(z)
2ik3C08 8)Jo(kssin( B) p) 9z The angleu defined by(2.22, can be modified by a varia-
- tion of pressure and temperature, as it is dependent on the
Amtw3 linear susceptibilities of the medium. The transverse ratio

= (3 i
cz X (0,0, 0)exp(ikycod 5) also depends on the medium properties through the aingle

) . and on the geometry through the anglef the fundamental
—3ik coq @))zZ}{AJy(k sin(a)p)}®. (2.15

Bessel beam. Note, that for the negatively dispersive media
Now, multiplying both sides bfksp sin(8)Jo(kesin(B)p)], both the angles tha and theg (from Eq. (10) of Ref.[2]),
and integrating ovep (0<p<w) yields

ga(z) 2mwiA

Jz c?i

3
L tan(B)exdi(kscog B)—3k coq a))]z

<X (0,0,0) fowpao(kgsin(mp)

X[Jo(k sin(a)p)]*dp. (2.16

Use has been made of Lommel’s reddlt for an integral

are to be equal to or less than the cone anglef the fun-
damental Bessel beam.

For a positively dispersive medium, definition of the
angle u by the use of Eq(2.22) is improper ak;>3k. In
this case the condition for longitudinal phase matching can
still be satisfied by choosing>«. However the transverse-
phase-matching factor is then

2The K5 in the denominator of the prefactor in E@) of Ref.[2]
is to be replaced by length in the numerator as if2.17) above.

over the product of the two Bessel functions of zeroth orderrhe additional phase factor i2.17 does not contribute to the
Solving (2.16 for the amplitude of the generated third har- intensity of THG. It is made explicit here to demonstrate the
monic at the end face of a sample of lengtlyives equivalence 0f2.17) to (3.19 derived later in the paper.
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FIG. 1. (a) The sections of the cones of the fundamental, and the third-harmonic wave vectors are (fhdhendetails of the positions
of the transverse components for transverse-phase matching discussed in the text ardc3hGyyrshow examples of transverse-phase-
matching quadrilaterals for some chosen cdses texk, diagram(e) is relevant for the evaluation of TPMI. The lengths of some vectors are
not exactly to the same scale as implied in the text. This defect may be ignored.

ks 2 1 2 axis OZ of the cones. The right side of the lil& N” in Fig.

T=3{1+ (@) -1 m] , (2249 1(a) shows the transverse sectior the side view of the
cones as seen on a plane perpendicularly to the principal axis

-3 Va. (2.29 OZ atN, and parallel to the lin&’NN". In the longitudinal

sectionAA, A'A’ are along the generators of the cone of the
fundamental, an@®P is along the generator of the cone of
the third harmonic. The angle (8) is the angle of the cone
of the fundamenta(TH). As_the pressure of the gas is in-
creased the poinP (OP=|kg|) in Fig. 1(a) moves along
'N'PN and B changes fronB=q, to =0, all the time main-
taining the longitudinal phase-matching conditi¢®.21).

We know that the TPMI vanishes fdr>3. Thus positively
dispersive media do not support self-phase-matching.
Equation(2.17), quoted in[2] is the main result of the
Bessel beam representation of the conical beam. It demo
strates linear dependence on the lenptlof the medium

provided the phase matching is satisfied. In contrast to thRIote that the lengtho,, = |3K|. The angleu characterizing

plane-wave situation the phase matching is broken into tw?he medium is also depicted by the right-angled triangle

parts. The longitudinal part is repres_enteq by the sync funCOM P, such thatl gy =lop'. At =0, the pointsM, N, P
tion, and the transverse part is contained in TPMI. We elabo-"_." . . ¢ Sk
coincide atN’; and atu=« coincidence takes the place ldf
rate next on the TPMI. - ! . ) .
with N’, and of P with N. In the transverse section the circle

marked TH § ) is the locus of the tip of the third-harmonic
wave vectoik; alongO P (fundamental wave-vectdr along
Before we discuss the calculations of the phase-matchin@a). Each TH circle is marked by the value of the corre-
integral it is instructive to show how it takes into account thesponding ratioT =(kssing/k sin@). The f circle and the TH
different possibilities of the SPM. Consider the graphic rep-circle coincide forT=1. For the sake of clarity no TH circle
resentation in Fig. 1 of various parameters defined here anidr T<1 lying inside thef circle has been shown.
in Ref.[2]. The different possibilities of transverse-phase matching
Two sections of the cones of the wave vectors of thewhich contribute to the TPMI, can be understood with refer-
fundamental k) and the generated third-harmor(ic;) are  ence to Figs. (—1(g) which give the details of the posi-
represented in Fig.(&). The left side of lineN’N” shows the tions and directions of the transverse components of the
longitudinal section cut by a plane containing the principalwave vectors of the fundamental and the TH. First, note that,

C. The transverse-phase-matching integral
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in Figs. Xa) and Xb), the radial vectorsglike JNQ defined by make B>a. The impossibility of meeting the transverse-
the direction pointing fromN to Q, and by a magnitude phase-matching condition is noted by the fact that then
equal to the line segmemQ) of the f circle, represent all NP>NN’ and that it cannot be made up by any vectorial
possible  directions of the  transverse  vectorsum of three vectors each of lendtisin a which total only
k, =k sina|n=|k sina|(cod’,sinl’) whereT is the angle with  yp to a maximum of lengthyy: -
any arbitrarily choserx axis in the transverse plane. The  Next consider the evaluation of the TPMIlin (2.19
radial vectorsp yp, of the TH circle, similarly, represent the \ynich can be written as
transverse vectotis§”) =k (*) of the TH (see below and Figs.
1(c)—1(g) for notation. 1 o o 27 27

Now, consider in Fig. (@ the T=3 at u=0 case, when = ——7 f dxf dyf dr, dr,
the point P lies on N’. Recall thatB=a for u=0. The (2m)" J =) =" Jo 0
transverse-phase matching, in this case, is represented by the o o . R . .
vectorial equation alonyIN’ [see Fig. 1c)] xf dl'; drexd i (KD + K2+ kP + k)51,

0 0

A similar equation exists for each point on the TH-circle p=iX+]y.
(T=3), [Fig. 1(a)] implying that for collinear-phase matching In going from (2.19 10 (2.27), the circular symmetry and a

the generated TH is emitted along each plane-wave comp i fthe B function has b dk
nent of the fundamental Bessel beam. Note that there is onfiFPreSentation of the bessel function has been usedk Ine

: : : : =1,2,3,4 in(2.27), are the four, two-dimensional vectors,
hase-match f h t of the TH-circle - e .
?‘I[E?I?) ase-matching diagram for each point of the are which are projections on they plane[see Fig. 1b)] of the

Consider now, in Fig. (b), the TH-circle (1<T<3) for four wave vectors viz. the thrdevectors of the fundamental,
which Ei“):lep-, Here. we’represent two of the severa @nd the fourth vector is thie; of the generated TH. ThE is

: ; : le, in thex-y plane, between the two-dimensional
cases in which the transverse-phase matching can gae angle, »3’) ' @)
achieved. The first case, is depicted by the set of vector ectorsp and thek.i . Note that _the vec_tork} (i f1,2,3;

- Pa@) - i -~ "0 . ave equal magnitude but arbitrary directions in thg
Una. =k, vna. =k and oy, =k?. The planar quadri- oo o

Na; = Bl v BNa; ™Rl Nag™ ™l - _ plane. As long as the longitudinal phase matching is not
lateral which is implied by the transverse-phase matchingmposedk” is also arbitrary in direction and length.
condition isNa;R;P. The two sides vizNa, andNP of the In order to estimaté2.27), divide the four planar vectors
quadrilateral overlap and correspond to the ase0 for the  jnto two groups as shown in Fig(é)
vectors,k'? andk'® of Fig. 1(d). The sidesa;R; andR;P

are provided by the radial vectors,, andvy,, of the f E=kV+k?, (2.29
circle and therefore by the wave vectors available in the cor-
responding directions in the Bessel beam. The second case is d= |214>_ |2(f’) _ (2.29

>

depicted by the set of vector§Nb1=IZ(l3), va2=Izil)

=0 Nb3=|252>. The quadrilateral representing the transverselet x andy axes be, respectively, along the vectbrand
phase matching is now seen to K&, R,P. The sides;R, perpendicular to the vectat. The integrations over the four

andR,P are provided by the parallel vectars, . Note that anglesl’; can now _be performed by redefiniig= 6, to be

the angle betweek'” andk'?; I',=6, to be the angle be-
the second case corresponds to the armigted;'® between 9(4) >3, - Lo 22 g
the k¥ andk'® [consider, for example, thél™ case, with tweenk,” andk, ; I'3=6;=¢, to be the angle between the
1 L, ' pi€, thez ' vectorc andd. The anglel’,=6, can be represented by the

$#=0 andc=d in Fig. 1(e)]. All values of 6, such that rotation of¢ andd vector systentintact with respect to any
0<6,< 63 are represented by the position of the radial vec-arpitrary direction in thex-y plane. Since this last rotation
tor vy, (6) lying betweenvy,, anduyp, (63%). Itis not  produces similar systems, an integration over dpangle is
demonstrated in the diagram but it can be stated that theeadily performed, which yields the valuer2Also perform-
corresponding quadrilateral for each value éfsuch that ing the integrations for the coordinate and thg coordinate
0<6,< 65 is always possible by taking two vectors viz. there results twas functions due to the infinite extension of
JNbZ and JNb3, not parallel to one another, to complete thethe medium in the two directions. Thus

guadrilateralNb;R,P. Note that unlike the collinear-phase-

matching casgwhich has only one diagram, Fig(cl] one 1= 1 j 40 f 46 J’ dé 2

has contribution to the TPMI from all the diagrams of ~(2m)® ! 2| d2m
transverse-phase matching characterized$y,8 85 for a )

NP=kssin3. By symmetry, equal contribution also comes xdlc cog¢)—d]2md[c sin(¢)], (2.30
from diagrams with(27m— 65'®)<6,<27r. Thus the phase-

matching integral of the present formalism takes into account c=2k sin(a)sin(0.56,), (2.3)

all possible transverse-phase matchings. This is very differ-
ent from the formalism adopted in Réfl]. For example itis  d?=(kgsin(B))?+ (k sin(a))?—2ksk sin(a)sin(B)coss,.
not clear from Eq(7) of Ref.[1] as to how these different (2.32
cases are to be taken into account.

A picture similar to Fig. 1 can be drawn fég>3k. The = Now performing the integration over the angteusing the
point P will then lie above the poinN’ on the lineNN’ to  seconds function, gives
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1 1, which demonstrates the ways the transverse-phase-
=5 f delj d6,5(c—d)c™. (2.33  matching condition is satisfied in these two cases. B&®
case off 1] is obtained when the value of reaches its cutoff
Finally using the remaining function to perform the inte- Vvalue a. We will use the resul{2.17) in Sec. IV. In the

gration over the angle;, contained in the length of the following section we are concerned with the derivation of
vectorc one gets (2.17) from an expression which is valid beyond the slowly
varying envelope approximation used in Sec. Il B.

2 Ill. AN EXACT TREATMENT

OF THE THIRD-HARMONIC GENERATION

1 T
= — 02 dé,[ (2k sin(«a)sin(0.56,)

Xk sin(a)cog0.50;)] 2. (2.34 BY BESSEL BEAM
Since,d=c= 2k sin(a)sin(0.56;) We consider the semi-infinite half-spa@@<p<w, 0<z
<) containing the nonlinear medium, and as in Sec. I,
| 1 (= 1 46 (2.35 work within the scalar wave equation. Taking as usual the
7 Jo dy(k sina)2—0.2502 2: ' refractive index for the third-harmonic wave to bg, and

(2.10-2.13 the (2.8) gives

In the last step, use has been made of the equal contributions 2
w3 3
from 0 to 7, and from7 to 27. Note that, one has to be V2 +n2 = Vi=—pyt, 3.1)
careful with the upper limit of the integral if2.35. The
upper limit is 7, for T<1, e.g., Fig. #f) for T=1, and Fig.

1(g) as a representative case fbx1. For, T>1, the upper ns=[1+4mxV(ws)], 3.2
limit is 6,= 65", see in Fig. 1b) the quadrilateraNb;R,P.

6% may be determined by the condition that the pojection 4mrwix'¥(0,0,0)

of k® andk? perpendicular ta becomes zero. This pro- P= o2 ' 3.3
jection is exactly the term under the square roo(2r85.

Thus atg,= 65> In order to solve(3.1) consider the Fourier transform of

both sides. We take
4(k sina)?2—d?(0,= 65%)=0.

The integrand ir(2.39 gives a large contribution a=0 V3 (X)= f Wy(K)e ™ XdK, (3.4
for 0<T<3. It develops another region which gives a large

contribution to the integral at ‘I’+3()Z)= —13 f g(lZ)e“*Z'idIZ @5
(i) G,=m for (y2—1)<T<1 (2m) ’
(ii) 0,=67% with cog 03®)=[(T?~3)/2T] where
for 1<T<3, g(IZ):f KXy +2(X)dX. (3.6

Note also that aT =1, (2.35 is a divergent integral, which
essentially stems due to the infinite extension of the Bess%
beam in the transverse directions. The overlap is thus maxi-
mum atT=1. The divergence &t=1 need not be disturbing,

as such divergence is seen in Lommel’s formula too. Lom-
mel’s formula and the integrdR.19 represent, respectively,
the effective transverse areas over which the product of the
Bessel beam with itself and of the cube of the fundamentakor the circularly symmetrigs”, one can write
with the generated third harmonic, have a nonzero value. The

he @3(}2) is determined from the algebraic relation in the
space. We get

. Pg(K)
‘I’3(K)= m, k3C —n3w3 (37)

transverse-phase-matching diagram Tor1 is depicted in K)_J dz d¢ Ky 3k”)zj 27p dp[Jo(K, p)13Io(K, p),
Fig. 1(f). Note that, because of the degeneracy in Iength

each point of the TH circle gets a contribution from every (3.9
other point of thef circle. Figure 1 of Ref[2] has been .

obtained from(2.35 by using different values of its param- 2775(Ku 3ky)

eters. T F(R), 3.9

It will be helpful here to recapitulate the results of Réf]
along with those of the above expressions. The self-phase- w .
matching case oB=«/3, for small inclinatione of Ref.[1] F(‘ﬁ)=j 27p dp[Jo(p) 13Jo(Rp), (3.10
corresponds to the divergenceTat 1 in the present formal- 0
ism. Similarly their collinear-phase-matching case, where K
B=a corresponds here to the divergenceTat3. The two o=k p, M= -t (3.1
divergences correspond to the diagrarf3 and Xc) in Fig. Kk,
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Thus The modified expression for the amplitudeKnspace, valid
for all mode parametdf, and that which satisfies the bound-
= - Po(K—3k)) F(R) ary condition in the ordinary space
W3(K) (3.12

T 2mik)? KK )

(3.12 gives the amplitude of the forced wave in the nonlin- Ws(X0lz=0=0 @13
ear medium for the mod&. The amplitude exists for all
modes for whiclg(K) is nonzero. Thus the amplituda.12
exist in the region of space<0z<L in which the medium
pervades. The corresponding amplitude is determined from }Z): PF(R) | (K, —3ky) — o(K—Kg)

(3.4). However, the amplitude of only such modes is ex- 3 (2m)3(k,)? K2—k3

pected to grow, whose mode paramefelies on the energy (3.19
shellK?=k3. For such mode£3.12 has singularity. A con-

venient way to take account of the singularity is to convertThe corresponding spatial amplitude is obtained by using
(3.12 into 0/0 form by adding the solution of the homoge- (3.14) in (3.4). Taking advantage of the circular symmetry,
neous part o0f3.1), which exists only on the energy shell. the result can be written as

is given by

PA3 foo 27 8(K,— 3k, e~ K17— 27 5(K — kg)e~ 205 KD)2

(2m)2k,)? K, dK; F(9R)Jo(K, p)

Vs (0= 0 [KZ—(K—KD)]

(3.19

While writing (3.15 use has been made in replacikigac- K,=kscogB); K, =kgsin(B); k,=ksina); z=L
cording to the twas functions. The first term in the numera- (3.20
tor in the square bracket admits all valuedof, irrespective _ ) )
of the fact that the corresponding mode will or will not be (3.19 becomes identical to the slowly varying envelope ap-
supported by the medium. The second term on the other harifoximation result2.17). The expressio(3.16), however, is
does the same but fa¢ ?=k3—K 2. The combination of the valid for all lengths of the sample. It is readily checked that
two terms in(3.15 acts in such a way that at large distancesthe experiments of Ref1] can be analyzed using the slowly
only such forced modes will grow which are supported byvarying envelope resul2.17) of Sec. Il or(3.19 above.
the free wave solution. This may be demonstrated by the [N the next section we us@.17) to discuss the THG by
following modification of the square bracket; we may write the multiple Bessel beam incident fundamental.
the square bracket as

IV. MULTIPLE BESSEL BEAMS

e 3ikiz_ g-iz(k5—Kk5)H2 1 ) .
27— , M _ The numerical results gR.17) for a model system giving
i([k3—KZ1Y2-3k,) Ki—(k3—K?) a single Bessel beam, are discussed in R&f. The model
i([K3—K2172-3k,) chosen has the ring slit with radias=0.45 cm and the width

(3.1 da=0.1 mm, the focal length of the convex lens is assumed
to be 10.0 cm and;=0.355 u. The Bessel beam emerging
So in the limit of largez and K?>—k3 (3.16 implies in  from such a model system is derived in the Appendix. We
addition to a phase factor the following expression: use(A8) to represent the input Bessel beam. Figure 2 of Ref.
[2] shows the total detected pow8Ej?) of the third har-
) . 2 L2 monic as a function of pressufproportional to{1—cosu})
(2m)“Zlunity if (k3—K7)™—3k|] [2iK,]’ (319 normalized suitably. The detected povit,]?) is calculated
using(2.17) according to
which could also mean to imply

a
Esl?=2 f dp|¥ 3|2
K, —(K2—K)Y2  and K, 3k;. (3.18 [Bl*=2m | pdpl¥s]

Making use of these expressions for lamye(3.15 can be It is assumed to be falling on a circular detector placed cen-
simplified. It gives, along with the phase factor mentionedtrally and perpendicularly to the axis at the end of the
above, the result sample. The radius of the detector as>k;sin(«), where
B=«a is the largest cone angle which the generated Bessel
oo g Ko K.z beam of the third harmonic can have at collinear-phase-
W3 (X)=PA KZ(2iK,) 2° “Io(KLp)F(R). matching conditions(x=0.0), which occurs at very low
. (3.19  Ppressure¢because in the vacuum there is no difference in the
velocities of the fundamental and the third-harmonic waves
Now, if one takes At low pressures there are fewer atoms in the cell, which
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TABLE I. Single Bessel beam.

Medium Transverse Output Phase-Matching Nature of
angle ratio angle integral Phase-Matching
o T B I CP/SP
0 3 a #0 Collinear-
Phase Matching
a 0 0 #0 Self-
Phase Matching
Mo 1 Bo maximum Self-

Phase Matching

produce small amplitudes of the generated third-harmonic g(z)zz[zwAﬂ15(,3)5(y1)+2773A§A2|25(5)5(y2)
wave. As the pressure is increased the phase mismatch

Ax(w3,w) becomes significant, the collinear-phase matching +2m3A1AS1 B (B) 8(ys) +2mA4E(B) 8(Ya)],
can no longer be satisfied. It is in this domain that the ad- 4.3
vantages due to the possibilities of self-phase matching set '
in. Simultaneous satisfaction of the longitudinal and the — _ ; —ikscog B)z

= =t Jo(k 3 ,
transverse-phase matching becomes possible—and the (B)=1anB)Jo(kssin(B)p)e
amount of the third harmonic generated depends on the ef- _ — 3k
fective area over which there is significant overlap of the Y1=keCo8 B) — 3k coday),
transverse variations of the cube of the fundamental and the _ _ _
third-harmonic Bessel beam. The maximum occurs at y2=ksC08 )~ 2k codary) —k cog az), 4.4
k5 sin(B)=k sin(a) at which ya=kzcogB)—k coga;)— 2k coq a,),

tan( B,) = (1/3)tan ).

On further increase of the pressure the effective area de-

creases but does not vanish. The decrease is controlled by the | = J 210 dp J3(K sin( @) p)In(Kasi 4.5

tan(B) and by the sharp cutoff gi>« whenl=0. Yo pdp Jolk sin(a1)p)Jo(kssin(£)p). (4.53
The values of the parametefsg,| along with the nature

y4=Ksc0g B) — 3k cog ay),

of phase matching occurring at different values of the me- o o
dium angleu for a single Bessel beam are summarized in l2= fo 2mpdp Jo(k sin(ay)p)
Table I, for ready reference.
We consider now how by having more than one Bessel X Jo(k sin(ay)p)Jo(kssin(B)p), (4.5b

beam in the input radiation one can have a broader width like
that shown in Fig(3) of Ref.[2]. % _

13= fo 2mpdp Jo(k sin(a;y)p)
A. Third-harmonic generation using two Bessel beams

2 . .
Consider two thin-ring slits of radia, anda, (a;<a,). X Jolk sin(az) p)Io(kssin(B)p), (4.5

Their widthsda; andda, are very small compared to their .

radii. The two radii can be arbitrarily close to one another. |4:f 27pdp I3k sin(az)p)do(KsSin(B)p).

For definiteness, let these two ring slits generate distinct 0

Bessel beams, of cone angles and «,, (a;<a,), respec- (4.50
tively. These Bessel beams overlap in the nonlinear medium

generating the third harmonic. The fundamental field in the It is clear from the above that a photon of the generated

medium is represented by third harmonic can come from four different combinations of
the three photons of the fundamental beaifis: all three
V=gl Ae” K o8z (k sin(ay)p) photons come from the; beam;(2) all three photons come
, from the a, beam;(3) one photon comes from the, beam
+Age K %223, (k sin(a,)p)], (4.)  and two photons come from the, beam; and4) two pho-

_ tons come fromy, beam and one photon comes from the
A andA, are the amplitudes of the two Bessel beams. Thesgeam. Consequently there are four different longitudinal
are determined, as discussed briefly in the Appendix, by thBhase—matching conditions represented by the f®func-
field illuminating the ring slits, and the widths of the ring tions in(4.3). Thus the generated third-harmonic field can be
slits. The generated third-harmonic amplitude in the long+n 5 superposition of four distinct Bessel beams, their angles

sample limit is given by being determined by the prevailing conditions in the sample.
o2 In order to develop a scheme to label the four distinct beams,
TW3 recall that for the single thin-ring-slit case, a Bessel beam is

Vi =—7 X 0,0,0)&2), (4.2 g g

ic produced when
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Osu<a. (4.6) X 103
From (4.6) and from Table | it is seen that the output radia- 20.0 3
tion has a separate Bessel beam for each input Bessel beam 1
corresponding to the angleg and «,. In addition there are ]
two other angles*® and «“ defined by 15.0 7
3coga®)=2coga;)+coga,), 4.7 ™ ] |
- q 3
b |
3 cog ™) =cog a;) +2 cog ), 4.8 £ 100 2
which determine the additional two Bessel beams in the out- 3
put radiation. The cone anglgh, B,, B;, and B, of the four 5.0 ]
Bessel beams which constitute the output radiation are deter- ] la
mined from the respective longitudinal phase-matching con- 3
ditions, and are given by 00 i ———~ B R .
0.0 0.5 1.0 1.5
coday) b/ Po
(3) FIG. 2. The behavior of the four transverse-phase-matching in-
coq a'?) .
cogBy)=———, tegrals as functions of the pressure of the gas for a model system
Ccosu containing two Bessel beams in the input radiation are shown.
@ 4.9
cos B) = coda'™) three slits. Thig1+1+1) combination of the photons of the
3 cosu ' fundamental is in addition to th@+1) and(3+0) combina-
tions encountered earlier in the two slit case. For the three
_ cogay) slits case these three combinations add up to give ten inde-
CoSBy) = cosu pendent values of the cone angl®f the output Bessel beam

_ _ _ ~ components. Consequently the harmonic radiation in the
Using the eight angles, one has the following possibilitiesthree slits case is a superposition of ten Bessel beams. We
between the input and output Bessel beams in the case of theave the presentation of their detailed calculations for future

two thin-ring slits: experimental papers.

(a) four Bessel beams, with;, B,, B3 and B, for O<u<ay; Note, however, that on increasing the number of slits
(b) three Bessel beams with angle8,, B;, B, for  from one to two, one encountered an increase in the toler-
a<u<a®; ance width of the pressufeompare Fig. 3here and Fig. 2

(c) two Bessel beams with anglgs, B, for a®<u<a®; of Ref.[2]). Such an increase in the tolerance width does not
(d) one Bessel beam with angl for ¢'¥<u<as; and occur in going from two to three slits if the third slit is
(e) no Bessel beam fo,<pu. introduced at an intermediate radius; such that

The amplitude of each Bessel beam component in the,<az<a,. This is because the width of the curve in Fig. 3
output is determined by the corresponding TPMI viz.
l1,15,13,1,. Figure 2 shows the behaviors bf, I, |5, and
I, for the model systema;=0.45 cm, a,=0.55 cm,
da;=da,=0.01 cm,f=10.0 cm, and for various values of
the pressures. The double peakd jrand |3 are easily un- 3
derstood to be the two alternate ways the overlap integral can 2.0 3
acquire a local maximum. ]

Figure 3 demonstrates the intensity of the generated TH

X 10715
2.5 7

recorded by the detector placedzat10.0 cm. The curvea o 1o
andb correspond to the situations when eitlagror «, input u_ﬂ’ E
Bessel beam is only present. The cucveepresents the gen- 1.0

eration of the third harmonic when the;, and «, Bessel
beams are simultaneously present in the sample. This Fig. 3 3
clearly demonstrates the wide pressure range over which a 0.5 4
significant third harmonic can be generated by the use of 1
multiple Bessel beams.

B. Three and more than three input Bessel beams

If one uses three ring slits in the front focal plane one has
three Bessel beams interacting simultaneously with the non- FIG. 3. The intensity of the third harmonic detected in the case
linear medium. The third-harmonic photon can now beof the two Bessel beams is plotted. Note the wide width of the curve
formed also by the combination of one photon each from thevhen both Bessel beams are present.
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is determined by the minimum and the maximum radii of the 13
. . X ; X 10
multiple ring slit system, and the overall interference effects
of the superpositions of the multiple Bessel beams in the 5‘O§
generated third harmonic. In the next section a model is dis- ]
cussed to obtain the radiation from a broad-ring slit. 4.0 ]
(1)X3000
C. The broad-ring slit 1o ] (11)x1

In the experiment of Ref1] a broad-ring slit was in use. ™% |
One may represent a broad-ring slit comprising of a large 3 (2)x200.
number of thin-ring slits, lying side by side in the broad- 2.0 1
annular region defined by an inner radausind outer radius 3
b. The field generated by such a broad-ring slit may be rep- 10 E
resented by an integral of the following typeee the Appen- R
dix) ]

0.0 3o e . 5
b f 0.0 1.0 2.0 X 10
\If1+=Af 2ardr exp(—ikzz)Jo(Krp/L), (4.10 o
a
A FIG. 4. Curves are the same as in Figs. 3 of R&f.and those
A=— (4.1 of Fig. 3 of this paper plotted with suitable multiplicative factors to
INC be accommodated in the same graph. This is done to compare the
various features of the curves=0.45,b=0.55, andf =10.0.
L2=f%+r2, (4.12
is assumed to be of width 0.01 cm, and is placed with its
p?=x>+y?, (4.13  center at the marker 0,1,2,3,4,5,6,7,8,9,10 separated by 0.01

cm. In this case there are as many as 286 valueg. dh

L is the average distance of the broad-ring aperture from thgeneral forn slits one hasN[=n(n+1)(n+2)/6] distinct

center of the lensf is the focal length of the leng, is the
wave length of the fundamental radiation, addis a con-

combinations of ,,r,,r 5 leading to the different values ¢
some of which may be degenerate, depending on the value of

stant related to the amplitude of the radiation which illumi- the three radii. The intensity of the detected third harmonic is
nates the broad slit, and the geometry, as discussed briefly jslotted in Fig. 3 of Ref[2]. In Fig. 4 we accommodate the

the Appendix.

three cases viz. the single-slit, the two-slit, and the broad-slit

The generated third harmonic in the long-sample limit is(represented by 11-sjiconfigurations considered above. The

then given by the expression similar (#.2) where the func-
tion &(2) is replaced by

b b b
é(2)=z2 (277)4Jar1dr1f rzdrzf rdrs=(B)

a a

X 8{kgcog8— kf(Ly 1+ L0+ L3

X JO pdp Jo(ksp sinB)Jo(kpri/L1)

XJo(Kprz/Ez)Jo(Kprglﬁg)}. (414)

The difference betwee®.14 and (4.2) is an additional
effect. This is revealed by noting that (4.14), there may be
several combinations of slits with different radii;,r,,r;

unnormalized power detected at the end face of the sample of
length 10 cm placed symmetrically in a region where the
approximate Bessel beam is formed on the optical axis, is
plotted in Fig. 4. For the sake of clarity each curve is multi-
plied by a suitable factor mentioned alongside each curve.
The width of the broad-slit configuration is wider than that
for a single-slit case but is narrower with respect to the two
slit configuration. The reason for the reduction in the width is
the effect of the intereference of the multiple Bessel beams
of the TH produced in the broad-slit case. The intereference
has much less detrimental effect for the two-slit configura-
tion. The width is more but the power is much less in the
two-slit case compared to the broad-slit case

Lastly it is of interest to note the results of the present
theory when the radii of the ring slit or the focal length of the
lens is varied. By decreasing the radii and/or increasing the
focal length one modifies the angheto smaller values. This

which simultaneously satisfy a longitudinal phase-matchingmplies that the pressure of the gas at which the maximum
condition corresponding to a particulgr Each one of these THG may occur decreases. To demonstrate this we have
combinations has a different value of the transverse-phaselotted in Figs. 5 and 6 the three cases as in Fig. 4. Figure 5
matching integral. Physically this additional effect to allow shows the effect of increasing the focal length of the lens
phase matching for a given value gf arises because the compared to that in Fig. 4; and Fig. 6 shows the effect of
three photons can come not only from different azimuthaldecreasing the radii of the annular slit with respect to those
angles but also from several different values of the inclinain Fig. 4. As mentioned above in both cases the

tion to thez axis. The analytical evaluation 64.14) has not
been possible. We have numerically evaluatédil4) by

breaking the broad slit of Ref1] in to 11 slits lying in the
annular region defined by=0.45 cm,b=0.55 cm. Each slit

pressures—at which the maximum occurs—decreases and
the overall power is reduced. It remains to be seen if the
experimental results would follow the same pattern.

In conclusion we have given besides the details of the
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X 10713 I 1
3.0 5 NN
o
| !
E X1Y1,[\ | '
2.0 3 (2)X100 a i
1 \|, 1
s f i
L l
- (1)X1000 ' !
1.0 3 : :
] I |
I |
LL(11)X1 L
X1¥1%4 X2¥2Zy X3Y3Z3
0.0 Frrrrmerrrmerro P S l 5
0.0 4.0 8.0 X 10 ] ) .
P FIG. 7. The ring slit and lens arrangement used for producing a
Bessel beam or a superposition of them is shown.
FIG. 5. Curves multiplied with indicated factors for the single-, APPENDIX
double-, and 11-slit cases for the mo@dme as that in Fig.)4but
with f=50.0 are shown. The derivation of the Bessel function solution from a ring

slit placed at the front focal plane of a convex lens is not
theory of the THG by Bessel beams an important result thanew. It is included here for completeness and ready refer-
the width of the pressure range can be controlled by controlence. Let the disturbance at the ring slit, in the P|§l§k§yl
ling the radial distance between two-ring slits and filling the = (x, y, z=z,) (see Fig. 7 be represented by
internal space either by a single-ring slit in between, or by a
number of slits. There is much scope for improvement of the u(Xl,yl,Zl)=A5(xf+yi—a2)exp(—iKzl). (A1)
present formalism. For example, it is important to take into , .
account the curvature of the wave front in the actual experi] N€ disturbance at the plaig, ;= (x2,y2,2=2,+1 ), just
ments of Ref[1]. The curvature effects are expected to beto the left of the lens, as shown in Fig. 7, is given by the
important for shorter focal lengths where the THG is pre-scalar diffraction theory as
dicted to be higher by the present formalism.

1 expikraq)
U(Xz,)’zyzz)f f N u(X1,Y1) Tt
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1.0 X1y1
] 2,2
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0.0 N /A— LI T - |Ka.
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FIG. 6. Curves multiplied with indicated factors for the single-, )
double-, and 11-slit cases for the modet0.1 cm,b=0.15 cm, |he disturbance on the plarﬁxSyg,:(Xs'Y&Z:Zl““f‘FA)
f=10.0 cm, with an individual slit0.005 cm are shown. to just right of the lens is given in the well-known manner by
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replacingx,— X3, y,—Ys and introducing the modification (a/f )?<1. Let the disturbance to the right of the plane
of the curvature to the wave front due to the lens. We havez;=L+nA be such a solution of the scalar wave equation
which preserves the angular spectrum of the plane-wave so-

u(x LA)= exfdix(L+nA)] lution, as represented by the disturbance onxthe; plane,
3:Ys iNC then in the region where the waves overlap one may write,
X u(xy,y;)ada exgik(L+nA
ff (X1,Y1) dep u(x,y,z)= i «( )] f f Aadadp
- Y
1Y1 (a, )
 X3+y3 i ka f
Xexp —ik ——|ex —T{xgco&ﬁ Xexﬁ<—iKzz)
.  X5ty3
+y3sing} [exp ik 57 |- (A7) Xex;{ —i— {x cosp+y sing}|. (A8)

Here A is the thickness of the lens amdis the refractive
index of the material of the lens. The curvature of the waveThis has been used as the incident fundamental Bessel beam
front in the planexs,y; may be ignored as long as in the text for small values afla and constans.
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