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a  b  s  t  r  a  c  t

We  report  the  effectiveness  of laser-induced  breakdown  spectroscopy  (LIBS) in probing  the  content  of
pharmaceutical  tablets  and also  investigate  its feasibility  for  routine  classification.  This  method  is partic-
ularly  beneficial  in  applications  where  its exquisite  chemical  specificity  and  suitability  for  remote  and  on
site characterization  significantly  improves  the speed  and  accuracy  of quality  control  and  assurance  pro-
cess. Our  experiments  reveal  that  in  addition  to the presence  of  carbon,  hydrogen,  nitrogen  and  oxygen,
which  can  be primarily  attributed  to the active  pharmaceutical  ingredients,  specific  inorganic  atoms  were
also present  in all the  tablets.  Initial  attempts  at classification  by a ratiometric  approach  using  oxygen
(∼777  nm)  to  nitrogen  (742.36  nm,  744.23  nm  and  746.83  nm)  compositional  values  yielded  an  optimal
value  at  746.83  nm  with  the  least  relative  standard  deviation  but  nevertheless  failed  to  provide  an  accept-
able classification.  To  overcome  this  bottleneck  in  the detection  process,  two chemometric  algorithms,
harmaceutical tablets i.e.  principal  component  analysis  (PCA)  and  soft  independent  modeling  of  class  analogy  (SIMCA),  were
implemented  to exploit  the  multivariate  nature  of  the  LIBS  data  demonstrating  that  LIBS  has  the  potential
to differentiate  and  discriminate  among  pharmaceutical  tablets.  We  report  excellent  prospective  classi-
fication  accuracy  using  supervised  classification  via the  SIMCA  algorithm,  demonstrating  its  potential  for
future  applications  in process  analytical  technology,  especially  for fast  on-line  process  control  monitoring
applications  in  the  pharmaceutical  industry.
. Introduction

Laser induced breakdown spectroscopy (LIBS) is an atomic emis-
ion based technique where a pulsed laser light is focused on to the
ample producing hot plasma [1–3]. The resultant plasma plume
onsists of electrons and ions of the sample constituents, which
mit radiation as the plasma cools down. Typically, several peaks
re observed in the LIBS spectra in the 200–1000 nm spectral region.
he emission wavelength is characteristic of atoms/ions present in
he plasma and area under the specific curve(s) (i.e. intensity of the
pecific spectral features) is proportional to concentration(s) of the
nalyte(s) contributing to it. In some cases molecular emissions are
lso observed [4,5]. The standard atomic and ionic emission wave-

engths are tabulated in NIST database [6].  Although this technique

as discovered a few decades back, it has received a great deal
f attention from researchers in the past few years because of the
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many advantages it offers as a spectroscopic analytical tool. One of
the most attractive features of LIBS is the lack of substantial sample
preparation requirements, which considerably reduces the typi-
cal time needed for comparable detection processes. Samples in
any form, be it solid, liquid or gas, can be used for the LIBS experi-
ments. Solid samples can be used in their original form directly for
the experiment. Furthermore, the total time needed to perform an
experiment and acquire the results is very small. Moreover, with
the availability of high power lasers and sensitive detectors it is
now possible to perform LIBS experiments on samples located at
few meters of distance (i.e. stand-off detection) [7].  These attributes
make this technique suitable for on-site and remote characteri-
zation, which is of significant interest in a variety of industrial
applications.

Particularly, on-site LIBS based detection, combined with
chemometrics, can expedite quality assurance of the important
pharmaceutical products. All pharmaceutical tablets typically com-

prise a mixture of organic active substances (also known as active
pharmaceutical ingredient (API)) and excipients, which may  have
various inorganic elements present as additives or impurities.
Importantly, LIBS can detect both organic and inorganic part of the
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Table  1
Details of pharmaceutical samples investigated in this study.

Sl. No Sample Formula of the primary component Ingredients No. of spectra

1 Brufen C13H8O2 Ibuprofen, Erythosine 15
2 Brufen-coated C13H8O2 Ibuprofen, Erythosine, titanium dioxide 15
3 Glucosamine C6H13NO5 Glucosamine sulphate, chondroitinsuplhate 10
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4  Glucosamine-coated C6H13NO5

5  Vitamin C C6H8O6

6  Paracetamol C8H9NO2

ample in a single step, which is not possible in other techniques
uch as ICP-OES or ICP-MS. The knowledge of organic part of the
ample can be valuable in the drug discovery stage as well as in the
roduction process of the drugs. Additionally, in cases of counterfeit
harmaceutical drugs, LIBS can be potentially used for extracting
ormulation information and, importantly, for screening them.

In this context, despite LIBS investigations of several materials
ave been reported in the literature, detection and composi-
ional analysis of pharmaceutical samples has received much less
ttention [8–10]. In this paper, we investigate the feasibility of
IBS for routine pharmaceutical tablet investigation for compo-
itional information and discrimination among tablets procured
ver the counter from local pharmacy. Herein, we first report
ur observations of the LIBS-based elemental analysis on com-
on  pharmaceutical tablets. Further, we attempted to classify

hese tablets into their corresponding functional groups based
n a ratiometric approach. Finally, we incorporated multivariate
hemometric analysis to exploit the multi-channel spectral dataset.
iven the intrinsic advantages of these multivariate techniques in

mproving prediction accuracy, we anticipate that the combination
f LIBS and chemometrics will be a powerful tool in future for rapid
n-line process control monitoring (for example, see Mowery et al.
11] and Barrette and Turmel [12]) and counterfeit tablet detection
13] particularly in the pharmaceutical industry.

. Brief description of multivariate classifiers

As is well-known in the field of analytical chemistry and pro-
ess technology, simple ratiometric approaches, where the relative
ntensity of spectral lines is monitored, often do not provide
cceptable classification results. To overcome this difficulty and to
tilize the full extent of multi-channel data available, multivariate
hemometric algorithms can be employed. For our application of
iscrimination of over-the-counter pharmaceutical samples using
IBS, we employ an unsupervised (principal component analysis,
CA) as well as a related supervised (soft independent modeling
f class analogy, SIMCA) classification method [14–16].  Previous
nvestigators have also employed these [17–21] as well as other
hemometric methods, including partial least square discriminant
nalysis [22,23],  neural networks [17,24] and discriminant function
nalysis [25,26], for processing LIBS data acquired from a diverse
pectrum of samples ranging from high energy materials to rocks.
he working concepts and the primary advantages of using PCA and
IMCA are briefly stated in the following paragraphs.

Principal component analysis (PCA) is one of the most exten-
ively used multivariate statistical techniques in chemometrics and
epresents a powerful tool for exploratory data analysis and for
aking predictive models [27]. The linear multivariate PCA mod-

ls are developed using orthogonal basis vectors (eigenvectors),
hich are called principal components, thereby reducing the high-
imensional LIBS data onto a lower dimensional space. In PCA one
erforms a linear mathematical transformation of the data into a

ew coordinate system such that the largest variance lies on the
rst axis and decreases thereafter for each successive axis. For the
nalysis presented in this article, PCA can be thought of as an unsu-
ervised classification technique that separates the samples into
ucosamine sulphate, chondroitinsuplhate, titanium dioxide 10
dium ascorbate, ascorbic acid 15
racetamol 20

clusters based on the variance of their corresponding LIBS spectra.
Ideally, the separation obtained based on PCA analysis of LIBS spec-
tra would correspond to the separate classes of over-the-counter
pharmaceutical drugs tested in this study.

In contrast to PCA, SIMCA is a supervised classification tech-
nique. It is worth noting that the SIMCA method incorporates the
application of PCA for dimensionality reduction [28,29]. Because of
its supervised nature, it necessitates a training data set consisting
of samples with a set of attributes (e.g. LIBS spectra) and, impor-
tantly, their class membership (e.g. type of pharmaceutical tablet).
The primary idea of soft modeling refers to the fact that the clas-
sifier can identify samples as belonging to multiple (overlapping)
classes and is not constrained to producing a classification of sam-
ples into strictly discrete (non-overlapping) classes. Importantly,
SIMCA enables independent modeling of the classes as opposed to
an overall variance modeling as performed in PCA. (The optimiza-
tion of number of principal components retained in our models is
further detailed in the ensuing Section 3.2)  The class distance is esti-
mated as the geometric distance (e.g. mean orthogonal distance)
from the respective PC models. SIMCA-based predictive classifica-
tion is subsequently performed by comparing the residual variance
of the prospective sample with the mean residual variance of the
training samples belonging to the specific class.

3. Materials and methods

3.1. Experimental

The over-the-counter drug samples were purchased from a local
pharmacy. The details of the samples are provided in Table 1. For
the coated samples, the spectra were first recorded directly with the
coating. (Here, coated samples refer to the tablets that are available
with colored coatings on them.) The protocol outlined in Missaghi
and Fassihi [30] was used for removal of coating ensuring the rela-
tive flatness of sample. The potential variations introduced by this
sample preparation technique are elaborated in Section 4.

To ensure that each laser pulse hits a fresh portion, the sam-
ples were translated using a motorized linear X–Y translation stage.
Laser pulses with the energy of 25 mJ  from a second harmonic
of Nd:YAG laser at 532 nm (7 ns pulse width, 10 Hz repetition
rate) were focused on to the sample using an 80 mm convex lens.
The signal was collected using a lens system and was coupled to
the spectrograph (Michelle ANDOR ME5000, coupled to an iSTAR
DH734 ICCD). The resolving power of the spectrometer used was
5000. Spectra were recorded with an integration time of 1 �s and a
delay of 0.5 �s. The delay refers to the time difference between the
incidence of the laser pulse on the sample and opening of the ICCD
gate. The Pockels cell output of the laser triggered a delay generator
(SRS DG 535), which in turn provided a TTL (0–5 V) pulse to trigger
the ICCD.

A set of ten tablets was  used for each of the drug samples. Two
spectra from each tablet were acquired after taking average over

ten consecutive pulses. In this way, twenty spectra for each sample
were recorded. However, a subset of these spectra for each sam-
ple (as listed in Table 1) was used for chemometric analysis after
accounting for threshold signal-to-noise ratios and outlier rejection
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ig. 1. LIBS spectra of the samples used in the study. (a) Paracetamol, (b) Vitamin C
eutral  oxygen and CaII refers to singly ionized calcium.

sing Student’s t-test employing the Mahalanobis distance func-
ion [31,32].  No other data pre-processing was performed prior
o chemometric analysis to avoid the potential incorporation of
purious effects into our calibration models.

.2. Data analysis

For both of the aforementioned methods, 85 spectral datasets
cquired from pharmaceutical samples were used for analysis. Each
pectrum contained 25,505 information pixels and further variable
election was  not pursued in the analysis presented here. First, PCA
odels were created based on the entire spectral dataset using the

tatistics Toolbox of MATLAB R2010b (Math Works, Natick, MA).
ince the constructed PCA models were used only for visualization
urposes (rather than for class prediction), no optimization was
erformed for determining the number of principal components to
e retained (unlike for SIMCA, as described below).

SIMCA was performed on the spectral dataset in conjunction
ith the class membership information. In this investigation, 30

est samples (5 samples per each of the 6 classes of tablets) were
andomly chosen and kept aside for prospective application. The
onstruction of an independent test set is a standard chemometrics
pproach employed to diminish and/or examine for the presence of
purious correlations. Subsequently, the 55 training samples were
sed to develop the SIMCA models using a modified version of
he LIBRA toolbox for MATLAB originally developed by Verboven
nd Hubert [33]. (It is worth emphasizing that separate PCA mod-
ls were developed for each class of drug on the corresponding
5 training samples per iteration and that these PC models were
ot linked to the previous PCA implementation on 85 samples,
hich was only used for visualization purposes.) To ensure the

eproducibility of the classification results, 100 iterations were
erformed to obtain an average value of the classification accu-
acy (where for every iteration re-splitting of the entire 85 sample
ataset into training (55) and test (30) samples was  performed).

 key point in SIMCA model development is to decide how many
f the principal components should be retained in the subsequent
nalysis. In an ideal situation, this number should equal the number
f sample constituents. However, in real life applications (such as
n our study), the number is rarely known a priori; moreover, cor-

elations between sample constituents, system drift and noise also
lay a key role in the final number of principal components retained

n real world situations. Here, we employed a standard leave-one-
ut cross-validation procedure to determine the number of PCs for
rufen, (d) coated Brufen, (e) glucosamine, and (f) glucosamine-coated. OI refers to

each PCA model. The optimal number of PCs was observed to be in
the range of 3–5 for each of the classes under investigation.

Finally, we employed equally weighted scaled orthogonal and
score distances for assignment of class membership. In addition,
an unclassification criterion was  defined to prevent the misclas-
sification of potential samples that were not close to the center
of any of the PCA models. Similar to the method outlined in the
study performed by Sirven et al. [34], we assumed that the distances
of training sample to center of the corresponding class followed a
normal distribution. This normal distribution was then employed
to compute the probability of class membership of any test spec-
trum, given its distance to the center of the different classes. In the
event that the membership probability for every class was  observed
to be less than 5%, we  assigned it as an “unclassified” sample and
removed it from further classification analysis. This protocol helps
reduce the number of misclassifications and the decision threshold
(i.e. statistical significance of 5%) can be tuned depending on the
requirements for the specific monitoring technology.

4. Results and discussion

4.1. Spectral analysis

A representative LIBS spectrum for each of the six drug sam-
ples is plotted separately in Fig. 1(a)–(f), for the sake of clarity.
All the spectra exhibited peaks corresponding to nitrogen, oxygen,
hydrogen and carbon. These lines can be attributed to the primary
components responsible for the action of the tablets (active phar-
maceutical ingredients), which are organic molecules. Though the
primary component of Brufen and Vitamin C do not contain any
nitrogen in them, yet their LIBS spectra show the nitrogen peaks.
The possible reason for observing nitrogen peaks in these sam-
ples could be the presence of other ingredients such as flavoring
and coloring agents that are added to the pharmaceutical tablets.
The spectra also exhibited peaks corresponding to iron, manganese,
sodium, vanadium, magnesium, titanium and calcium. Except for
vanadium, all the elements were detected when separate measure-
ments were performed using ICP-OES (data not shown here). We
suspect that the other metals could be components of excipients
[35] (especially sodium, iron and titanium) or contaminants [36].

Differences were also observed with respect to coated and uncoated
samples. While both the recordings showed peaks corresponding to
carbon, hydrogen, oxygen and nitrogen, the coated spectra showed
strong peaks corresponding to titanium. Table 2 shows the list of the
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Fig. 2. (a) Oxygen and (b) nitrogen LIBS peaks from the Paracetamol spectra. The
dots represent the experimental points and the solid lines are the Lorentzian fits.

Table 2
Different peaks observed in the LIBS spectra and the corresponding atomic elements.

S. No. Element Wavelength (nm)

1 Carbon 247.85
2 Iron 279.78, 283.59, 285.18
3  Manganese 279.10, 279.48, 380.96
4  Sodium 589.0, 589.60
5  Vanadium 251.16, 572.68, 635.70
6  Oxygen 777.19, 777.41, 777.53, 822.18, 822.76
7  Nitrogen 742.36, 744.23, 746.83, 818.48, 818.80, 821.63, 824.23
8 Hydrogen 656.27
9 Magnesium 518.36

e
w

4

t
i
r

10 Titanium 394.8, 395.6, 395.8, 399.8
11  Calcium 393.37, 396.86

lements observed in the spectra and their corresponding emission
avelengths.

.2. Ratiometric analysis
We explore the potential of the ratiometric approach in iden-
ifying the tablets based on their respective oxygen to nitrogen
ntensity ratios. This approach was previously shown to yield
easonable identification of organic nitro-compounds, namely
nta 87 (2011) 53– 59

4-nitroaniline and 4-nitrotoluene, by Rai et al. [37]. The oxy-
gen peak at 777 nm (O) and nitrogen peaks at 742.36 nm (N1),
744.23 nm (N2), and 746.83 nm (N3) were used for evaluating the
O/N ratios. The oxygen peak at 777 nm is a triplet and was not fully
resolved in our LIBS spectra. Three different O/N ratios were cal-
culated corresponding to the peaks of nitrogen at O/N1, O/N2 and
O/N3. A direct evaluation of the O/N intensity ratios by consider-
ing the areas under the peaks resulted in very large values. This
is understandable as density of the species is represented by I/Ag,
where I is the observed area under the peak, A is the transition prob-
ability and g is the degeneracy of the upper energy level involved in
the transition. As the observed oxygen peak at 777 nm is a triplet, it
was deconvolved using a triple Lorentzian fit. Fig. 2 shows a typical
fit for the nitrogen using a Lorentzian fit and oxygen with a triple
Lorentzian.

I/Ag was  calculated for three peaks corresponding to
777.19 nm (I/Ag)1, 777. 41 nm (I/Ag)2 and 777. 53 nm (I/Ag)3
for oxygen. The values of A and g were taken from NIST
database [6]. I/Ag for oxygen was  taken as the sum of these
three ratios [(I/Ag)oxygen = (I/Ag)1 + (I/Ag)2 + (I/Ag)3]. The ratio of
(I/Ag)oxygen/(I/Ag)nitrogen was  taken with N1, N2 and N3. Table 3
shows the O/N ratios for all the samples. The ratios for all the
spectra were first calculated. An elimination of ratios outside the
mean ± standard deviation was  performed. The ratios reported
in the table are the averages over this set. We  observed that
except for Paracetamol and Vitamin C for which RSD were less
than 10, the ratios showed a large variation. This could be a result
of inhomogeneity in the sample consisting of various additives
including the matrix. It was  also observed that there is a general
increasing trend of RSD from O/N3 to O/N1. In order to assess
the effect of the ambient air, which also contains the oxygen and
nitrogen, the spectra for Paracetamol were recorded under argon
gas purging. This resulted in all the three ratios becoming close
to each other and close to the actual value of 2. A CHNO analysis
(Thermo Finnigan flash EA 112 analyzer) of Paracetamol also
yielded a ratio of 1.99. Interestingly, this ratio matches very well
with the O/N ratio of the primary component in Paracetamol as
well as the value obtained by the LIBS spectra with argon purging.

4.3. Multivariate chemometric analysis

To enhance the accuracy for LIBS-based pharmaceutical tablet
classification beyond that obtained by standard ratiometric
approaches, PCA and SIMCA were employed. PCA was first per-
formed on the entire 85 sample dataset for understanding the
critical spectral features in the LIBS dataset as well as for probing
the cluster behavior of the pharmaceutical samples.

Fig. 3 shows the first three principal components, which reveal
the dimensions that explain most of the variance present in the
dataset. These components, while abstract in form as they are
obtained through a mathematical change of basis (e.g. via singu-
lar value decomposition), are useful in indicating the informative
spectral features associated with the different samples. Here,
we observed that the first PC appears strikingly similar to the
glucosamine coated spectra (compared to Fig. 1) and the corre-
sponding magnitudes of the scores for the glucosamine coated
samples are larger than that for the other samples. On the other
hand, PC2 shows a substantive influence of manganese alongside
the contributions of the API elements such as carbon, hydrogen,
nitrogen and oxygen. This is reflected in the higher PC scores for
the Paracetamol and Vitamin C samples. The first two PCs explain
90.67% of the total variance in the dataset (as computed from the

cumulative contribution of their eigenvalues). After incorporating
the third PC, this metric rises to 96.29%. The relatively less signif-
icance of the third PC can also be visualized from Fig. 3, as some
of the spectral features are repetitions from the previous PCs. The
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Table  3
Oxygen to nitrogen ratios with the oxygen peak at 777 nm (O) and nitrogen peaks at 742.36 nm (N1), 744.23 nm (N2), and 746.83 nm (N3).

S No. Sample O/N1 O/N2 O/N3

1 Brufen 3.08 ± 1.28 2.55 ± 0.37 1.95 ± 0.15
2 Brufen-coated 2.91 ± 0.50 2.51 ± 0.34 2.37 ± 0.41
3 Glucosamine 2.66 ± 0.75 3.15 ± 0.46 2.62 ± 0.31
4  Glucosamine-coated 3.65 ± 1.81 2.13 ± 0.28 2.57 ± 0.20
5  Vitamin C 2.83 ± 0.22 2.74 ± 0.27 2.23 ± 0.09
6 Paracetamol 2.32 ± 0.21 2.23 ± 0.15 1.80 ± 0.09

Paracetamol – argon purging 1.86 ± 0.2 1.82 ± 0.12 1.93 ± 0.08

F datase
c

s
i

f
fi
t
o
t
c
e
g
p
e
t
e
o
c
B
s
s
u
t
c
c
b
r
c
e

are misclassified.
To obtain a more comprehensive sense of the results, we com-

puted the average rate of unclassification, misclassification and

Table 4
SIMCA classification results obtained from 30 test samples over 100 iterations.

Average rate of . . . Correct
classification

Wrong
classification

Unclassification

Brufen 0.908 0.076 0.016
Brufen-coated 0.934 0.062 0.004
Glucosamine 0.904 0.088 0.008
ig. 3. The first three principal components corresponding to the entire spectral 

ombined, explain 96.29% of the net variance in the dataset.

ubsequent PCs (i.e. fourth, fifth, etc.) are fairly noisy and their
ncorporation deteriorates the quality of the model.

Fig. 4 shows the PC scores plot for LIBS analysis of the six dif-
erent classes of pharmaceutical drugs (for the aforementioned
rst three PCs). Clearly, the samples of each class tend to cluster
ogether and in almost all cases are fairly well separated from the
ther classes. Of these, Vitamin C and Paracetamol appear to be
he easiest to distinguish based on their distance from the other
lasses. It is also interesting to probe the dispersion of the differ-
nt classes along the PC directions. For example, Vitamin C and
lucosamine tablets show a considerably larger dispersion as com-
ared to both the coated and uncoated Brufen samples, which
xhibit a more uniform pattern. This provides a novel insight into
he tablet-to-tablet intra-class variations (e.g. arising from the het-
rogeneity of each tablet composition). Additionally, we can also
bserve outliers based on the spectral data, notably one coated glu-
osamine sample and two Paracetamol samples as seen in Fig. 4.
ased on these results we can reasonably infer that: (a) the LIBS
pectra provides vital information which can be used in routine
ample monitoring for pharmaceutical tablets (or at least the ones
sed in this study) and (b) the PCA classification is able to iden-
ify the primary elements which help in distinguishing the various
lasses, which corresponds to the existing knowledge of the sample
omposition. The latter proves that there is a direct causality

etween PCA classification and chemical basis of the samples,
ather than an arbitrary (potentially spurious) correlation, which
annot be successfully reproduced in prospective application. Nev-
rtheless, while PCA is a valuable tool for recognizing similarities
t acquired from the pharmaceutical samples. These three principal components,

between sample types, it does not automatically provide class
memberships due to its unsupervised nature. To assign class mem-
bership to the tested tablets, we  have employed SIMCA.

As mentioned earlier, SIMCA computes a PCA model for each
of the six classes of pharmaceutical samples and identifies the
prospective samples based on their distance to the respective
models. Based on this key concept and the previously stated
unclassification criterion, class memberships were assigned to 30
prediction samples for each iteration. Fig. 5 shows a bar plot visu-
alization of SIMCA classifications for a representative set of 30 test
samples (for a specific iteration). In this representative case we
observed that none of the samples were unclassified (unclassified
samples are assigned a class membership of 0) and three of them
Glucosamine-coated 0.940 0.002 0.058
Paracetamol 0.968 0 0.032
Vitamin C 0.988 0 0.012
Average 0.9403 0.038 0.0217
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Fig. 4. PC scores plot of the first three principal components for the

orrect classification over 100 iterations (Table 4). We  observe that
n average we obtain acceptable rate of correct classification for
ll the classes of pharmaceutical samples (>90%). In addition, rate
f unclassification is fairly low indicating that the acquired data
onsisted of few outliers and the training model was  sensitive to
ll remaining samples (i.e. all but the outliers). We  observed that
he unclassification is relatively higher for the coated glucosamine
5.8%) and Paracetamol (3.2%) samples. This is not surprising based
n the PCA scores plot (Fig. 4), where one could clearly observe
ne coated glucosamine and two Paracetamol spectral outliers.
urthermore, we find that the Paracetamol, Vitamin C and coated
lucosamine samples are almost perfectly classified (i.e. there is

o misclassification), which is again consistent with the clear sep-
ration of these samples observed in the PCA scores plot (Fig. 4).
he others, namely the Brufen (both coated and uncoated) and

ig. 5. Bar plot of SIMCA classifications for a representative set of 30 test samples. The t
 different class, as shown by the different bar coloring. Predicted Class ID are as follow
coated); 5: Paracetamol; and 6: Vitamin C. Here, three misclassifications are observed,
nterpretation of the references to color in this figure legend, the reader is referred to the
al dataset acquired from the six classes of pharmaceutical samples.

uncoated glucosamine sample, are significantly more difficult to
classify resulting in higher errors (7.6%, 6.2% and 8.8%, respectively).

An interesting point in this regard is the striking difference
in classification accuracy for the coated and uncoated samples,
both for Brufen and glucosamine. The significantly better classi-
fication accuracy for the coated samples (93.4% and 94% correct
classification for Brufen and glucosamine, respectively, compared
to 90.8% and 90.4% for their uncoated counterparts) can be pri-
marily attributed to the distinctive coating composition of these
tablets. Coating is mostly made of titanium oxide, which is evi-
dently absent in the uncoated tablets as was shown in Fig. 1.
Alternately, one may  attribute the superior classification results

obtained for coated samples to experimental errors/inaccuracies
in removal of the coating from the respective tablets. Improper
removal of the coating may  lead to non-uniform surfaces (i.e.

est samples are ordered such that each successive subset of 5 samples belongs to
s: 0: unclassified; 1: Brufen; 2: Brufen (coated); 3: glucosamine; 4: glucosamine

 one corresponding to coated Brufen and two corresponding to glucosamine. (For
 web version of the article.)
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oughness) at the microscopic scale, which may  in turn result in
oise in the LIBS measurements. In addition, the residual coating
lements could contaminate the signal acquired at the LIBS spec-
rometer due to their (undesirable) presence in the plasma plume
f the uncoated samples.

Finally, we  note that for the Brufen (coated and uncoated) and
he uncoated glucosamine tablets, the variance between the classes
s of the scale of the variance within the respective classes, thereby
mpeding prospective SIMCA analysis. This problem can be poten-
ially solved by employing an alternate classification method such
s PLS-DA (partial least squares based discriminant analysis) in the
uture [38]. PLS-DA seeks to establish the maximum separation
etween classes as opposed to PCA which does not discriminate
etween class-to-class and intra-class variability in explaining the
otal variance in the dataset. Consequently, PLS-DA may  present

 better alternative when these two variability numbers are of
he same order, as observed above for Brufen and uncoated glu-
osamine samples.

In summary, we have shown the potential of LIBS as an alternate
ethod for in-line monitoring and analysis of different pharma-

eutical drugs. The current study lays the feasibility foundation for
urther investigations of the robustness of the proposed approach
s well as an evaluation of its true value with respect to conven-
ional approaches such as ICP-OES. In addition, we  envision that
ncorporation of feature selection approaches will lead to a sig-
ificant reduction in computation time and a possible increase in
ccuracy and robustness of the classification models. This may  also
esult in a concomitant simplification of the necessary hardware for
IBS data acquisition and will form the core of our future studies.

. Conclusions

In this report, we have studied the effectiveness of routine mon-
toring of commercial pharmaceutical tablets using a combination
f LIBS and chemometric methods. Oxygen to nitrogen ratios were
alculated based on the spectra but nevertheless failed to provide
n acceptable classification. Ratios for Paracetamol and Vitamin C
howed a RSD of less than 10 with O/N3 RSD for Vitamin C being
.03. Large variations in the calculated ratios are a result of multi-
le components being present in the tablet. The observed O/N ratios
an be further improved by performing the experiment in inert gas
urging. In contrast to the ratiometric approach, PCA exhibited a
lear visual diagnosis of the different classes of samples/spectra
nd also provides a physical interpretation of the classification
esults by identifying the key components that explain the vari-
nce in the dataset. Finally, SIMCA was employed for automatic
rediction modeling with an average rate of approximately 94%
orrect classification. Based on the results obtained in this study,
e expect that the combination of LIBS and chemometrics can

e used successfully for quality control and routine monitoring of
harmaceutical tablets. Further, this combination can be used to
creen and establish qualitative formulation differences between
uspect counterfeit and authentic tablets, as long as appropriate
raining of the classification models is undertaken. In addition, the
roposed approach is broad and general enough to be extended
o similar (and otherwise intractable) applications in process con-
rol and on-site reaction monitoring. We  envision that future work

n the area of developing more robust classification methods,

hich can suitably treat even non-representative prospective sam-
les, will enhance the feasibility of this approach in the industrial
omain.
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