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ABSTRACT 

We present some of our initial experimental results from laser induced breakdown spectroscopy (LIBS) studies of few 
high energy materials such as a simple match stick (MS) and BKNO3 (BPN), and ammonium perchlorate (AP) using 
nanosecond (ns), picosecond (ps), and femtosecond (fs) pulses.  The characteristic peaks of each sample in different time 
domains are analyzed.  The merits and de-merits of ultrashort pulses in LIBS experiments for discrimination of high 
energy materials are highlighted.    
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1. INTRODUCTION 

LIBS is an attractive and a versatile technique for the detection of hazardous and prohibited substances, including stand-
off detection capability, constraint of a very small amount of material, and high detection speed. Several detailed studies 
in the last few years have resulted in the development of man-portable LIBS and standoff detection up to 100 m 
distances [1-7].  LIBS has been successfully evaluated for detection of explosive residues [8-11], hazardous chemical 
and biological materials [12,13] landmines [14-16].  Ultrashort laser pulses have tremendous potential in designing novel 
and sensitive systems for laser induced breakdown spectroscopy (LIBS) analysis [17].  Conventional LIBS uses 
nanosecond (ns) pulses whereas shorter pulse LIBS uses typically femtosecond (fs) pulses and this has specific 
advantages [18-20]. Fs LIBS has been used in variety of applications including distinguishing of explosives[21-25], 
animal tissues studies [26], identification of bacteria [27], in cultural heritage monitoring [28], microanalysis of alloys 
[29],  discrimination of microbiological samples [30], high spatial resolution analysis of biological molecules [31], depth 
profiling of historical objects [32] etc. to name a few.  The usgae of ultrashort pulses (compared to longer ns pulses) in 
the areas of micromachining has been well established over the last few years [33, 34].  There have been few initial 
studies with fs pulses in LIBS experiments on explosive related materials and the mandate has been divided over the 
advantages of ultrahshort pulses.  The major challenge in idenifying high energy materials (HEM’s) is the presence of 
common elements (C, N, O, and H) in all these materials.  Moreover, identifying HEM’s among themselves is also 
another huge challenge.  Herein, we present some of our experimental results from the LIBS measurements of simple 
high energy materials such as match stick, BKNO3 (Boron potassium nitrate, BPN), and Ammonium Perchlorate (AP).  
The LIBS spectra were collected using ns, ps, and fs pulses using a simple spectrometer without any gating.  The ns 
LIBS spectra was also collected using a gated ICCD and the various spectra obtained are compared and analyzed. 

2. EXPERIMENTAL DETAILS 

Ns pulses at 532 nm (10 Hz, 6 ns, ~400 mJ), ps/fs pulses at 800 nm (1 kHz, ~2 ps/~40fs, ~2.5/~2.0 mJ) were used for the 
experiments (see table 1).  The spectra were collected with simple configuration using a high resolution USB 
spectrometer (MAYA, Ocean Optics). The data collection geometry included either of (i) a single fiber with large core 
diameter (ii) collection of lenses for guiding the plasma emission to the spectrometer in free space.  Nanosecond LIBS 
studies were also performed using a gated ICCD coupled to Mechelle spectrograph (ANDOR). Figure 1(a) shows the 
schematic of the experimental set up used for ns LIBS experiment while figure 1(b) shows the fs LIBS experimental set 
up.  Typical energies used were 15-30 mJ for ns case, ~1 mJ for the ps/fs case. 
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(a)                                                                                                  (b) 

Figure 1 Experimental setup using (a) ns pulses and (b) fs pulses 
 

3. RESULTS AND DISCUSSION 

LIBS spectra were recorded for (a) match stick as is (b) pure BKNO3 and in pellet form (c) Ammounium perchlorate in 
pellet form.  Figures 2(a)-2(c) shows the LIBS spectra obtained with ns, ps, and fs pulses for the sample match stick, 
respectively.  Matchstick is normally made up of sulphides of arsenic or antimony, phosphorus and potassium chlorate. 
There could be some binders used such as gelatin (sodium also might be mixed). We observed the ionic peaks of S, P, N 
and O, and line emission of H, N, O, K, Na elements. With ns and ps pulses the presence of ionic peaks was dominant. 
Compared with the ns LIBS spectra ionic features were less intense in ps LIBS spectra and further decrement in intensity 
was observed in the fs LIBS spectra. K line intensity in the ns spectra was very strong while it decreased drastically in 
the ps spectra and was negligible in the fs spectra. Certain peaks were present only in fs spectra [e.g. S+(534.57) etc.] 
whereas few peaks were exclusive for the ns domain [e.g. S2+ (363.42 nm), ( K (691.108, 766.67), P+(427.85) etc.]. 
Another important feature observed was the decrease in continuum amount from ns to ps spectra.  All the spectra were 
recorded with USB (Maya, Ocean optics) spectrometer.  Manganese peaks were also found at 403.27 nm in all the 
spectra.  Figure 2(d) shows the time evolution of the ns LIBS spectra obtained with an ICCD and Mechelle spectrometer 
combination.  Figure 3 shows the LIBS data of MS acquired using the gate option (500 ns width and 500 ns delay).  
Some of the peaks were well resolved and some additional peaks were also observed (e.g. Mn (401.81 nm, 408.36), 
possibly an impurity) which could not be obtained using an ordinary spectrometer.  The contiuum has substantially 
decreased beyond the gate delay of 1 μs.  The possibilities and challeneges for identification of such materials include (a) 
Identification of peaks exclusive to each domain (devoid of gating, gating with various widths and delays) and 
understanding the reason for their presence/absence (b) evaluating the ratios of specific atomic peaks (c) identifying the 
emission signatures of atomic and molecular species (d) understanding the time evolution of each of these species.  In 
our case further analysis (including temperature evaluation and temporal intensity decay) is pending. 

Experimental parameters Nanosecond pulses Picosecond pulses Femtosecond pulses 
Pulse width (τ)  7 ns ~2 ps ~40 fs 

Bandwidth (Δλ) nm < 0.1 1-2  ~26  
Typical Energy (mJ) 20 1.6 1.8 

Wavelength (nm) 532 800 800 
Focusing lens 

Focal length (mm) 
80  (Plano convex lens) 75 (achromatic doublet) 75 (achromatic doublet) 

Spot size 2ω0 (μm) ~25  ~25 ~25  

Nd : YAG laser , 7 ns, 2X

M
Laser pulse direction

Power Supply 
and data transfer 

unit

Time evolution plasma studies and LIBS with ICCD set-up

lens

Photo diode
Process Monitoring 
with  Tektronix 200 
MHz Oscilloscope

SRS 532 - Delay 
Generator

PC for Controlling and 
Data processing for ICCD

Mechelle 
Spectrograph

ICCD 

plasma

15 V to 5 V 
converter
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Figure 2 LIBS spectra of a simple match stick obtained with (a) ~6 ns pulses (b) ~2 ps pulses (c) ~40 fs pulses using a non-gated 
spectrometer (MAYA, Ocean optics).  Bottom curve depicts the time-resolved ns LIBS spectrum obtained with an ICCD and 
Mechelle spectrograph combination.  The gate width and gate delay were both set to 500 ns.  Certain elemental peaks existed even 
after 3 μs. 

 

 

 

 

 

 

 

Figure 3 LIBS spectra of match stick with ns pulses using ICCD from  300 – 600 nm range (left) and from 600 – 900 nm (right). 
ICCD gate delay was 500 ns with a gate width of 500 ns. 

Figures 4(a)–3(c) shows the LIBS spectra of the pure sample BPN (a primary explosive) obtained with ns, ps, and fs 
pulses.  K and Na (impurity in BKNO3) lines are fingerprints for this material.  K has two major lines, one at 766.67, 
770.13 nm (doublet) and another at 691.88, 694.4 nm (doublet).  In the ns LIBS spectra the 691 nm line was not 
observed clearly but 766 nm doublet line was present. In ps LIBS spectra both doublet lines were present and in the fs 
LIBS spectra only 691 nm doublet lines  were present.  The other line could have been supressed by the pump because fs 
pulses possess broad bandwidth (~26 nm FHWM) compared to ns (<0.1 nm FWHM) or ps (1-2 nm) FWHM pulses.   
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Figure 4 LIBS spectra of BKNO3 pellet obtained with (a) ~6 ns pulses (b) ~2 ps pulses (c) ~40 fs pulses using a non-gated 
spectrometer (MAYA, Ocean optics).  (d) Time-resolved ns LIBS spectrum of BKNO3 pellet obtained with an ICCD and Mechelle 
spectrograph combination.  The gate width and gate delay were both set to 500 ns.  Certain elemental peaks existed even after 3.5  
 

 

 

 

 

 

 

 
 
Figure 5 LIBS spectra of BKNO3 between 200 nm to 500 nm (left) and between 500 nm to 900 nm (right).  ICCD gate delay was 500 
ns with a gate width of 500 ns. 
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Potassium atomic lines can be seen at 770.05 nm and 766.65 nm in the ns LIBS spectra of BPN. The nitrogen lines are 
seen at 822.1 nm, 868.61 nm and Oxygen at 777.57 nm and 844.88 nm. As nitrogen and oxygen are also present in the 
sample as well as the ambient air, we observe a variation of the strengths of these lines when compared to the ambient 
air alone.  B+ peak apart from N, O, K, peaks has been observed in all the spectra.  However, the ratios of atomic peak 
intensities varied from ns to fs case.  Figure 4(d) depicts time evolution of the ns LIBS spectra of BKNO3 in pellet form 
(especially the evolution of Ca, K, N+, and O) obtained with an ICCD with gate width and gate delay values of 500 ns.  
The elemental peak intensities were significant even after 3.5 μs 

Figure 5 shows the ICCD LIBS spectra of BPN pellets and it is evident that more peaks were observed using gate delay 
of 500 nm and a gate width of 500 ns. Boron peak (249.69 nm) was well resolved (B+ was identified in spectrometer 
data) along with some impurities such as Ca, Fe, Si, Mg, and C, possibly entering while preparing the pellets, in the 
spectra (left).  Time evolution studies of the K, O peaks (766.86 nm and 770.07 nm for K and 777.31 nm for oxygen, left 
part) and N peaks (near747 nm, right part) are depicted in figure 6. The K peak was long lived while the O peak near 777 
nm, interestingly, was a short lived one (<1 μs).  There were no molecular species observed in the ns spectra.  

 

 

 

 

 

 

 

 

 

Figure 6 Time evolution of the K, O peaks (766.86 nm and 770.07 nm for K and 777.31 nm for oxygen, left part) and N peaks (near 
747 nm, right part).  Gate width used 100 ns with a gate delay of 100 ns. 

 

 

 

 

 

 

 
 

Figure 7 LIBS spectra of AP pellet using ICCD with ns pulses (left) and fs pulses (right).  Gate width is 1000 (800) ns and gate delay 
is 1000 (200) for ns (fs) case.  Typical input energies were ~25 mJ and ~1.5 mJ for ns and fs cases, respectively. 
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When AP is mixed with a fuel (like a powdered aluminum and/or with an elastomeric binder) it can generate self-
sustained combustion at far under atmospheric pressure. It is an important oxidizer with a decades-long history of use in 
solid rocket propellants- space launch, military, amateur, hobby high powered rockets and in some fireworks.  Figure 7 
shows the gated LIBS spectra of AP with ns pulses (left) and fs pulses (right).  Ns spectral lines were more than the fs 
spectral lines.  Nonetheless, there were subtle differences in the peak intensity ratios of N, Cl, H, and O.  Further 
analyses could throw some light on the mechanisms of ionization and the chemistry of recombination processes taking 
place using ns and fs pulses.  Several studies over the last few years have confirmed that ultrashort laser pulses offer 
several advantages over the ns counterparts.  A number of the merits that have been indentified include (a) Low ablation 
threshold (b) Less thermal damage to the sample (c) Higher efficiency/Higher reliability.  The background is in general 
bereft of lines arising from the ambient air.  As the pulse width is shorter there is no interaction or minimal interaction of 
the generated plasma with the pulse itself.  Observation of molecular species in fs LIBS has been highlighted as one of 
the advantages.  Dikmelik et al [22,23] had observed emission from CN and C2 molecules as the marker for the 
explosive with fs LIBS. The most significant differences between the ns and fs spectra were the absence of atomic 
emission in the femtosecond spectrum for species associated with TNT along with the presence of molecular emission 
that was attributed to CN and C2 [22,23].  De Lucia et al. [24] studied several explosives and explosive residues with 
various pulse energies using ns and fs LIBS.  In contrast to earlier fs LIBS spectra of explosives, they had observed 
atomic emission peaks for the constituent elements of explosives – carbon, hydrogen, nitrogen, and oxygen. Their 
preliminary results indicated that several advantages attributed to femtosecond pulses were not realized at higher laser 
fluences.  The important observation made from their studies was carbon atomic emission intensity relative to the 
aluminum atomic emission intensity was greater for the femtosecond spectrum. 

There are several issues / challenges to be resolved / surmount before ultrashort pulse LIBS could be realized a 
potential technique for unambiguous identification of explosives and explosive residues from other organic molecules.  
Some of them are  (a) atmospheric air:  LIBS spectra in practicality will be recorded in atmospheric conditions and 
should be able to provide reliable data in atmosphere (b) single pulse/double pulse: Identification/Optimization of single 
pulse or double pulse (fs pulse followed by ns pulses in collinear/non-collinear geometries etc. [35-37]   (c) evaluate the 
effects of sample temperature and substrates on the LIBS spectra [38-40] (d) dependence of fs pulses shape and 
bandwidth on the LIBS spectra [41] (e) influence of ns, fs pulse polarization properties [42].  It was shown that the 
continuum emission produced in the ablation of an Al target with ns pulses was much more strongly polarized than the 
discrete line emission. This effect can be utilized to improve the resolution of the LIBS spectrum by using a polarizer to 
filter out the continuum background. (f) energy dependence of the LIBS signal [43] (g) Ratiometric methods for 
stoichiometric analysis [44] (h) new laser sources and wavelengths [45] might provide additional insights into the 
understanding of LIBS dynamics along with providing novel, compact laser sources for stand-off detection.  Some of the 
recent reports of fluence dependence indicate that the ratio of atomic-to-molecular emission increased as femtosecond 
pulse fluence is increased.  Further opportunities include pulse shaping with ultrashort pulses for additional information 
from LIBS spectra.  Accurate kinetic modeling of the recorded LIBS spectra in each time domain is essential to 
understand the effects of atmosphere, presence of particular molecular species etc. and resolve the discrepancies [46-48].   
Furthermore, detailed analyses is required for each set of LIBS data for classification and several detailed studies on 
same molecules are necessary [49].  Identification and understanding of the molecular species in short pulse LIBS 
spectra could be one of the directions [51]. Ultimately time-resolved data in each time domain could provide the key for 
identification, classification, and unambiguous detection of hazardous materials. 

4. CONCLUSIONS 
 
 In conclusion we have recorded the ns, ps, and fs LIBS spectra of match stick, BKNO3, and Ammonium 
perchlorate using a simple spectrometer without gating and ns/fs spectra for AP using gated ICCD coupled to a Mechelle 
spectrometer.  The differences and similarities observed in the initial LIBS spectra with different pulse widths have been 
analyzed.  Some of the major challenges in detection of high energy materials using ultrashort pulses have been outlined. 
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Table 1 Summary of peaks obtained from the LIBS spectra using Maya spectrometer and the assignment using NIST data base for 
match stick (left) and BPN (right) using ns, ps, and fs pulses 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Peak observed in ICCD LIBS 
spectra of BKNO3  

Assignment using NIST 
atomic spectral database 

247.88 C- (247.85) 
249.73 B- (249.67,249.77) 
250.69 Fe - (250.65) 
251.63 Fe - (251.65 ) 
252.42 Fe - (252.42) 
277.99 Mg - (277.98) 
288.18 Si - (288.15) 
292.90 Fe - (292.90) 
293.68 Mg - (293.65) 
383.24 Mg - (383.23) 
383.83 Mg - (383.82) 
393.39 Ca +- (393.36) 
396.88 Ca +- (396.84) 
518.42 Fe - (518.426) 
589.05 Na - (588.99, 589.59) 
656.32 H- (656.5) 
694.18 K  - (693.87) 
746.95 N (746.83) 
766.86 K- (766.48) 
770.07 K - (769.89) 
777.31 O  (777.53) 
821.74 N (821.072, 821.63) 
844.72 O  (844.62, 844.63) 
863.16 N - (862.92) 
868.22 N (868.02, 868.34, ) 

Peaks observed in LIBS 
spectra of  AP 

Assignment using NIST 
database 

Ns (nm) fs  (nm) 
588.96 588.96 Na (588.9) 
589.60 589.60 Na (589.59) 
656.36 656.35 H (656.27) 
742.50 N (742.36) 
744.33 744.33 N (744.22) 
746.91 746.85 N (746.83) 
777.50 777.20 O (777.19, 777.41.777.53)
818.57 818.57 N (818.48) 
821.69 821.67 N (821.63) 
824.41 824.41 N (824.23) 
837.67 837.56 Cl (837.59) 
844.72 844.62 O (844.67) 
857.70 
859.64 859.54 N (859.40) 
863.11 862.98 N (862.92) 
865.64 N (865.58) 
868.17 868.45 N (868.02, 868.34, 868.61)
871.35 N (871.17) 
871.93 N (871.88) 

Table 2 Summary of peak obtained in BPN ns LIBS spectra 
obtained using ICCD (left) and in AP LIBS spectra using ns 
and fs pulses using ICCS (top) 
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