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Influence of Scattering and Two-Photon Absorption
on the Optical Loss in GaAs—AD3 Nonlinear
Waveguides Measured Using Femtosecond Pulses
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Valentin Ortiz, and Vincent Berger

~ Abstract—The influence of scattering and two-photon absorp- refractive indices and facet reflectivities. Over the past few
tion on the optical loss in GaAs—A{ O3 semiconductor nonlinear years, several techniques including the cutback method [4],
waveguides has been studied using femtosecond pulses. By deﬁ)rism coupling [5], [6], photo-thermal deflection [7], and the

ploying a scattering technique, loss coefficients were evaluated over h
an extended wavelength range of 1.3—24m in the near-infrared. Fabry—Perot (FP) interference method [8]-{11], have been

A systematic study involving intensity and wavelength dependence €mployed for the evaluation of loss. Other techniques including
of the loss revealed the presence of two-photon absorption for intensity modulation using an acousto-optic modulator [12],
wavelengths below 1.6:m. A simple nonlinear transmission study photo-luminescence [13], optimized end-fire coupling [14],
enabled the. separat.ion of the twp-photon absorption coefficient self-pumped phase conjugation [15], scattering technique
from scattering and linear absorption. The calculated two-photon . . . :
absorption coefficients were~9-20 cm/GW. [16], multisection single-pass Fechnlque [17], aqd several
others [18]-[22] have all been tried and tested. While most of
these techniques are suited for the assessment of waveguides
with losses greater than 1 dB/cm, many are not universally
appealing due either to their complexity (e.g., self-pumped
phase conjugation method) or destructive nature (e.g., cut
. INTRODUCTION back method). Some techniques such as the prism-coupling

ECENT advances in the material research of IlI-Jechnique are not applicable to semiconductor waveguides,

semiconductor nonlinear waveguides continue to pav#ce the prisms have to be in contact with the waveguide,
the way for development of a new generation of integraté%hicﬁ is neither practical nor desirable. The FP interference
photonic devices for a variety of applications ranging frorfechnique has proved to be the most favorable and successful
wavelength mixing for telecommunications to infrared (|R§ipproach for evaluation of losses below 1 dB/cm, including in
frequency conversion for spectroscopy and trace gas detecti@@nplex structures such as directional couplers, Y-junctions,
Measurement of optical loss represents a vital componentdfd photonic crystal waveguides [23]-{25]. However, even
the assessment of these waveguides for nonlinear frequeHtgugh the technique is simple, robust, and nondestructive, it
conversion in the near- and mid-IR. Accurate knowledge s a number of drawbacks including stringent frequency-sta-
this parameter is particularly important in the performanéé,i"ty requirements of the optical source, accurate knowledge of
evaluation and implementation of resonant devices, mdaget reflectivities, and precision in the facet parallelism of the
notably integrated optical parametric oscillators (OPOs) wheMaveguide etalon for correct analysis of the obtained data [26],
due to the small available nonlinear gains, the magnitude 8] The scattering technique, on the other hand, is a relatively
loss can have a dramatic impact on the oscillation threshotlcomplicated method without particularly stringent demands
In single-pass devices, such as nonlinear frequency shifté?g, the optical source and has been successfully demonstrated
wavelength mixers [1], and harmonic generators [2], [3], opticHl @ variety of optical waveguides [28]-[32]. Moreover, for
loss is also vitally important since it clearly sets an upper limftny Waveguide application in telecommunications involving
to the maximum output power and conversion efficiency th¥{avelength-division multiplexing (WDM) [either dense WDM
may be achieved in the nonlinear process. or time-division multiplexing (TDM)], it is imperative to use

Unlike in their organic and inorganic counterparts, lossdgmtosecond pulses utilizing their large bandwidth. In such

in semiconductor nonlinear waveguides are more diffic#@ses, the continuous-wave (CW) FP technique would not

to characterize due to the inaccurate knowledge of effectipgovide any additional information regarding the propagation
and interaction of femtosecond pulses within the nonlinear
medium. On the contrary, the scattering technique using femto-
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to date been performed at discrete wavelengths in the near-IR T 45|
using a variety of optical sources. Recently, we reported our -
initial measurements of optical loss in GaAs-@L semi- 4.90 L . .
conductor nonlinear waveguides over an extended wavelength 14 16 18 20 22
range from 1.3 to 2.1m in the near-IR using the femtosecond Waveguide Length (mm)

scattering technique by employing a tunable OPO. By using )

femtosecond pulses from this OPO and by performing a sys-

tematic and detailed study at different input intensities, we haljg- 2: (@) Photograph of a typical image of scattered light in the waveguide at
. I . .5 pum. Light is coupled into the waveguide at the left-hand side. Magnified

determined the contributions of scattering and two-photon aBrge of the area is selected for loss evaluation. (b) Intensity profile of the

sorption to the total loss observed over an extended wavelengjtéttered light inside the waveguide at £15 with a loss of 2.6 cm*.

range in the infrared, including the important telecommu-

nications window. The results of these measurements @@guation can be rewritten in the form(I;) = In(l,) — L.
significant in the context of nonlinear frequency conversiofherefore, by recording the scattered intensity along the wave-
experiments in the near-IR, including difference frequengyiide and using a suitable algorithm based on the above equa-
generation [1], second-harmonic generation (SHG) [2], [3] ann, we can readily determine the overall loss coefficienin
optical parametric fluorescence [33], [34] that have recentiije present study the scattered intensity was monitored by an

been successfully demonstrated in such waveguides. IR camera (Electrophysics, Micron Viewer 7290A) sensitive in
the 0.4-2.2zm spectral ranges. The sample structure, shown
[I. EXPERIMENT in Fig. 1, was similar to that used in the SHG experiment [2].

It consisted of (GaA$001) substrate)/1000 nm AlAs/1000 nm

The complete details of the experimental set up have be
described previously [35]. We utilized the wavelength versE—"z)'7(36b'3'a‘5/4 X (37 nm AlAs/273 nm GaAs)/37 nm AlAs/

tility of femtosecond pulses derived from a periodically pole 000 nm A}, 7G&3A/30 nm GaAs. We used a 3.5-mm long

lithium niobate (PPLN) OPO pumped by a Ti:sapphire Iasesfample that incorporated several waveguides of different widths

The pulse duration was measured to~250 fs in the wave- rang'ing from 2o Gum. This is a passive device and, thergfore,

i semiconductor alloys are chosen such that the material is trans-
length regions close to 1/8m and~200 fs near 2.gum, and the .

. parent at the operating wavelengths.

pulse repetition rate was90 MHz. All measurements were per-
formed with TE-polarized input pulses. In the scattering tech-
nique, we expect the intensity of the light scattered normal to
the waveguide at a given point along the propagation directionFigs. 2(a) and 3(a) show typical scattering profiles in the
to be proportional to the intensity of the light in the waveguideaveguide at wavelengths of 1.5 and 2, respectively. The
at that point. The loss coefficient can then be determined tense profiles observed at the input and output extremes cor-
mapping the decay of scattered light intensity along the propspond to the coupling losses at facets of the waveguide. Other
agation length of the guide. This decay follows an exponentiablated areas of discontinuous intensity are due to the scat-
dependence according g = Ipe~*%, wherel, is the scat- tering from either dust particles or defects. The clear streak is
tered intensity after a propagation lendtithrough the wave- the scattered light while propagating through the waveguide.
guide, I, is the initial intensity at the start of the path, and A small change in the waveguide position or misalignment of
is the overall loss coefficient to be determined. The presencetbé input beam resulted in the disappearance of the streak, con-
any defects and inhomogeneities in the propagation path wofitdhing that it corresponded to the guided propagation mode
only affect the uniformity of the exponential decay. The abowanly. Measurements of loss were, therefore, conducted over this

I1l. RESULTS AND DISCUSSION
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arate the TPA contribution from others using simple nonlinear
s 200 225 250 transmission data.
We performed the loss measurements for different input
powers of~2, ~5, and~15 mW. Fig. 5 depicts the scattering
(b) profiles and the corresponding data along with the fits, which
Fig. 3. (a) Photograph of a typical image of scattered light in the waveguid¥as obtained for a single and best waveguide at 155 As
at 2.0um. (b) Intensity profile of the scattered light for a 1.94-chloss  the intensity increased, the scattering at the input facet also
waveguide at 2.gm. increased, thereby reducing the selected portion of waveguide
for further analysis. With increasing input intensity the slope
path. The wavelength tunability of the femtosecond OPO eaf the fit increased and thereby the overall loss. Typical loss
abled the measurements over a wide spectral range from 1.%dtues at 1.55:m increased fromv 1.18 cnt! for an input
2.1 um. The streak was found to be stronger at shorter waygswer~2 mW to 2.05 cn! for ~15 mW. We also performed
lengths, which could be due to the higher input power levelgavelength-dependent studies of loss using the wavelength
available and higher losses of the transmission optics at longienability of the femtosecond OPO. Fig. 6 shows the loss coeffi-
wavelengths. As shown in the magnified parts of Figs. 2(a) astnts measured for wavelengths ranging from 1.41 to Ar67
3(a), the section of the path comprising only the scattered lightte lowest set of data (solid squares) were obtained for an
from the waveguide and devoid of any other spurious light isput power of~2 mW before the input microscope objective.
selected for further analysis.Figs. 2(b) and 3(b) show the data the power was increased, the loss increased systematically
for selected portions of the scattered light at 1.5 andi2d) for all the wavelengths under study. The data represented by
respectively. Measurements were performed for several waegen circles were obtained fe¥5 mW and the data shown in
guides and the best waveguide was chosen for wavelength sigid triangles were recorded witkl5 mW of input power.
pendent studies. Fig. 4 shows the loss coefficients extractBue loss coefficient was- 1.0 cnt! for lower powers and
from the linear fit to the data were 1.15-2.55 cm', corre- increased to~ 1.5 cnT! and~ 2.0 cnT!, respectively, for
sponding to propagation losses of 5-11 dB/cm. The selectibigher powers. A simple and straightforward explanation for
of the particular set of data points from the plots of Figs. 2(llhe observed data is that at lower input intensities, the scattering
and 3(b) has a significant bearing on the slope of the graph andd absorption are the major contributors to loss and with
thereby, the loss coefficient. This is taken into account by tlecreasing intensities TPA becomes prominent and hence the
error bars depicted in Fig. 4. Since the loss coefficient is deverall loss increases. Our results on other waveguides with
rived directly from the fit, special care was taken in avoidindifferent widths suggest that the loss coefficient varied from
the spurious spikes arising from dust particles and defects. Weninimum of~ 0.9 cnt! for input powers of~2 mW to
clearly observe higher losses in the L& range compared to a maximum of~ 3.0 cni! for an input power o~15 mW.
the 2.0um range. We expect the major contributions to the lo&&hile the knowledge of loss dependence on the waveguide
to be from absorption and scattering from the combination wfidth is interesting in itself, our main goal in the present
waveguide and AlO3; (Alox) layers. Also, due to large peakstudy was to investigate the applicability criteria of scattering
powers of the femtosecond pulses, the presence of two-photechnique as a means of identifying the different contributions
absorption (TPA) at wavelengths below Lih would result in  to the overall loss in semiconductor nonlinear waveguides.
increased loss. That the TPA is an intensity-dependent process;ig. 7 depicts the variation in loss as a function of input power
while absorption and scattering are not, would enable us to sém- specific wavelengths in the best waveguide. The loss in-

Waveguide Length (mm)
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Fig. 5. Scattering profiles and the data with corresponding fits at/ArB%or: (a) ~2 mW; (b)~5 mW; and (c)~15 mW.

25 ——1———7— . . ——— input power level o~ 25 mW. These observations support the
argument that at higher input powers we have an extra contri-
| % i } } ] bution to the total loss arising from TPA. In order to investigate
20b % { % 4 the magnitude of TPA, we undertook intensity dependent trans-
— . 23 mw { { % % mission measurements for the best waveguide with TE input
e I 3 121; m % # ﬁ T polarization. Representative results of these studies at 1.48 and
CH 15l % | 1.55um are shown in Fig. 8(a) and (b). The nonlinear behavior
@ . § b ; $ $ of the data (solid circles) confirms the presence of TPA. Using
3 L Y3 ; i ; i . a simple model and the data, we evaluated the TPA coefficient
3 d f ; ) i at these wavelengths. The transmitted of optical intensity in a
10r ¥ B (] ’ semiconductor nonlinear medium is best described by the equa-
; ¥ % L ] tion [36], [37]
i, L ) L , dI(r,z,t)
00400 1425 1450 1475 1500 1525 1850 1575 1600 dz %0 A(rzt) —a B Przt) (1)
Wavelength (nm) and the solution is of the form

(1-R?)I(r,0,t)e !

Fig. 6. Loss coefficients plotted as a function of wavelength for different input j[(r7 z, t) = ( ) 2)
intensities. Squarel): ~ 2mW. Open circles(D): ~ 5mW. Inverted triangles l1—e~20'1
(V) ~ 15mW. l+a-B-(1-R)-I(r,0,t) —F5—

whereqy is the linear absorption coefficient, is the TPA co-
creased fromv 1 cm! to ~ 2.5 cnT! with an increase in efficient, 1 is the length of the nonlinear mediumR, is the re-
input power from~ 5 mW to~ 25 mW. It can be seen from theflectivity of the medium,I(r,0,t) is the incident irradiance,
plots that loss coefficient remains relatively constant beyond thg, z, t) is the transmitted irradiance after a path lengtand
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Fig. 7. Loss coefficients for the best waveguide plotted as a function of input intensity at different wavelengths: (a) 1.45, (b) 1.50, (c) 1)3b5apar(d

a is the modal structure factor arising from the average of the 2 mW in the 1.45-1.58:m range. Given the low input inten-
nonlinear interaction process over the transverse modal profiées in these measurements, we expect this loss to be due only
[36]-[40]. For obtaining the theoretical fits to the data, we usdd linear absorption and scattering and, hence, valueg of
values of a~ 0.5, R ~ 0.3, andl = 0.35 for the sample. The 0.8-1.2 cm~! were used to fit the data. In a separate experiment,
input irradiance at the waveguide entrance was calculated takihg value of loss coefficient obtained using a CW FP method was
into account the transmission of the objectives (90%) and reflee-1 cm~! at 1.32um, consistent with the values measured using
tion from the input facet (30%). the scattering technique at powers~o2 mW. These measure-
Fig. 8(a) and (b) shows nonlinear transmission data (soldents, therefore, support our assumption of the absence of any
circles) obtained for our waveguides at 1.48 and JuBband TPA in our scattering measurements for input powerad mw.
the corresponding fits (solid lines) obtained using (2). The thr&&g. 9 shows the values ¢f (~ 10-20 cm/GW) obtained in the
major factors influencing the peak intensities within waveguideavelength range from 1.43 to 1.7@n. The error bars depicted
are estimations of the coupling efficiency, the mode area, aimtthe figure are indicative of the inaccuracies in the calculation
the beam waist at focus of the microscope objective. All theséinput irradiance and the estimation of coupling efficiency.
parameters have been considered while calculating the peak infhere are several earlier reports on the TPA measurements
tensities at the start of the waveguide, and the typical valuiesbulk GaAs, waveguides of GaAs, AlGaAs, and GaAs-Al-
obtained werev 0.1-1.5 GW/cm. To obtain the values gf, GaAs [36]-[40], [45]-[52]. From their measurements on
we fixed o at the value corresponding to our measurementsatisotropic two-photon transitions in GaAs—-AlGaAs mul-
low input powers £ 2 mW) and fitted the theoretical modeltiple-quantum-well waveguides, Yaref al. [37], [38] report
to our experimental data. The loss coefficient is indepen- values of TPA coefficient ranging from 0 to 12 cm/GW in the
dent of input intensity and contains linear absorption due teavelength range of 1.49-1.66n. Their optical source was a
Alox layers and scattering from imperfections at the boundaode-locked YLF laser delivering 4—6-ps pulses. Villeneuve
aries of Alox and waveguide [41]-[44]. From intensity-deper39] obtained values of~ 0.1-1.2 cm/GW for AlGaAs
dent studies of the overall loss, depicted in Fig. 5, we obtainetultiple-quantum-well waveguides near half the band gap.
a loss coefficient o~ 0.8-1.2 cnt! for an input power of Villeneuve [40] also obtained values of~ 5-30 cm/GW
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2.0x10° e — times for the TM polarization. Islanet al. [48] presented
their nonlinear spectroscopy measurements near half-gap

Ng 1.6x10° - i in the bulk and quantum-well GaAs—-AlGaAs waveguides.

S | They obtained a TPA coefficient of 0.026 cm/GW for the

E 1.2x10° - i bulk material and an average value of 0.65 cm/GW for

2 ] the quantum-well waveguide in the 1.66-17® region.

#g 8.0x10" - : They also observed large nonlinear phase shifts while using

; Py 360-fs_ _pulse.s from a color ce_nter laser. The estimated peak

§ 4.0x10" - ;°=12'_1 emiGwW | - intensities within their waveguides were 10 GW/cnt. The

= ] =0.35cm | magnitude of TPA coefficients obtained in the present study
ool v .o (~ 0.9-2.0 x 10~® cm/W) matches very well with the theo-

0.0 3.0x10° 6.0x10° 9.0x10° 1.2x10° 1.5x10° retical values (0.1-1.% 10~® cm/W) of bulk GaAs reported

by Khurgin et al. [52] and those obtained experimentally by
) @ o ] Villeneuveet al. [40] (0.5-3.3x 10~* cm/W) for GaAs wave-
2010 ——— guides. The increase in the TPA values at higher wavelengths in
I T the present study could be due to the large uncertainties in the

E 1.6x10° 1.55 pm ] calculation of the peak intensities within the waveguide for the
S r T reasons discussed in previous section. Moreover, the OPO used
S 1.2x10° |- . for the experiments has tuning range up to 188 only (due
[ to mirror coatings) and near this wavelength range there is a
g 8.0x10" |- . possibility of the beam shape not being ideal, thereby leading to
P o, = 1.24 om” 1 even larger errors in the calculations of waveguide intensities.
S 4.0x10" B = 10.3cm/GW | Interestingly, the experimental TPA values of Villenewteal.
(= : I =035cm : [40] do show a small increase near L, as observed in our
0.0 e studies.
0.0 3.0x10° 6.0x10° 9.0x10° 1.2x10° 1.5x10° Since TPA is an intensity-dependent process, it will be
Input Intensity (W/cm?) strongly influenced by the peak pulse intensity within the

b waveguide. This, in turn, can vary drastically due to possible
() pulse-broadening effects arising from linear and nonlinear

Fig. 8. Nonlinear transmission data for the best waveguide plotted aﬁp?opagation effects. The most common mechanisms respon-
function of input intensity within the waveguide. The scattered points are

the experimental data and the solid line is the fit given by (2) at (a) 1.55 a§6b|e for_ temporal DUIse .broe.ldenin.g within the Wavegmde
(b) 1.48um. are the linear group velocity dispersion (GVD) and nonlinear

refraction (2) induced self-phase modulation (SPM). We per-

BT T T 1 ' U formed a simple theoretical estimate of pulse broadening due
_ to GVD. Since it is difficult to calculate the effective refractive
24} ] 1 indices and dispersion relations for the actual structure, we
F 1 used the data for GaAs under the assumption that the actual
20 - + . dispersion relations are not significantly different. Using the
§ 1 standard Afromowitz [53] model, we evaluated the dispersion
O 6| { 4 length and from it the pulse broadening in our 3.5-mm sample.
g I ] The pulse broadening due to GVD can be expressed in terms of
@ 12} i simple equation
| | AT, A
8 i = 1 —5 3
I | Ao ( " Z%) )
42 148 146 148 150 152 154 156 1.8 whereAr is the input pulse duratios\ 7 is the pulse duration
after propagating through a distan€eandZ, is the dispersion
Wavelength (um) length given by
Fig. 9. TPA coefficient §) plotted as a function of wavelength. AT& d2k -1
Zp = == 4
D 41n(2) {dwz] “)

over a wavelength range of 1.70-1.4®n for GaAs wave-
guides using 6-10-ps pulses from a color center laser. Tsamgered?k/dw? is the second-order dispersion. In our experi-
[45] investigated the polarization and field dependent TPA iment, the input pulse duration wdsr, ~ 250 fs. Using (4),
GaAs—-AlGaAs multiquantum-well waveguides in the half-bandie estimated the pulse broadening to-be..02 times the ini-
gap spectral region. The value @fobtained from their studies tial pulsewidth, which is negligibly small to be considered as
was ~ 1.1 cm/GW at 1.55um using TE polarization for having any effect on the pulse peak intensity and hence the TPA
the input pulses. The value g8 dropped by about sevencoefficient calculations. However, due to large peak powers of
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able over the entire wavelength range in the near- and mid-IR.
An ideal way of complete characterization of semiconductor

waveguide losses in the near- and mid-IR would involve the
ﬂ_ study of loss by the scattering technique using a femtosecond
|l OPOiinitially, followed by the FP technique using a CW-OPO,
thus enabling us to picture the interaction of short pulses within
the medium and the actual propagation losses.
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IV. CONCLUSIONS

In summary, we have presented measurements of optical
loss in GaAs—AlO3 nonlinear waveguides in the near infrared,
including the important telecommunication window (near
1.55 pm), and near 2.Qum, where these waveguides have
already been shown to be strong candidates for nonlinear
frequency conversion. Using the scattering technique and
femtosecond pulses from an OPO, the losses were evaluated
over an extended wavelength range from 1.3 to/2rl A sys-
tematic study involving intensity and wavelength dependence
revealed the magnitude of TPA and enabled us to separate
out its contribution to the overall loss. The TPA coefficient
as estimated to be-9-20 cm/GW in the 1.45-1.5bm
Q(/elength range, representing a contributiondf—1.5 cnt!

Intensity (arb. units)

1495 1500 1505
Wavelength (nm)

1
1490

Fig. 10. Transmitted spectra obtained for the best waveguide ani.set:
the input spectrum.

the femtosecond pulses used, we also considered the pOSSiq/\Illj
of pulse broadening due to SPM within the waveguide. Fig. ][

; . 10 the overall loss observed. Due to availability of large peak
shows the typical transmitted spectrum for the best wavegui Svers in the femtosecond pulses we also observed strong
obtained for various average input powers at An%, with the

. nonlinear phase shift in the waveguides, useful for applica-
ffons in ultrafast optical switching. Further studies involving

i : : i idized and nonoxidized samples would enable us to isolate
observed five-peak spectrum, obtained with an input POWET flle contribution of absorption and scattering from Alox alone.

g 15d mV\:], indiclz(;\tefshthe rrax_imum nonlinegr plhase_shift "We believe that this technique combined with the wavelength
uced at the peak of the pulsesd.5r [54]. Asimple estimate qoinijiy of the femtosecond OPO represents a general and
using the peak intensities at this power level leads to a valgI

13 ) ?nple method for accurate determination of waveguide losses
of ny ~ 9 x 1071 cm?/W, about two times larger than the, . os the near- and mid-IR wavelengths where few other
values obtal_ne_d in GaAs-AlGaAs waveguides studied bY Yaggactical optical sources are readily available.
et al.[38]. Similar measurements at 1.45 and 1.55 mm yielded
no values of~ 7 x 10713 cm?/W and~ 3 x 10~13 cm?/W,
respectively. However, as discussed above, due to the uncertain-
ties in the exact magnitude of pulse broadening within the wave-This work was performed within OFCORSE Il project of the
guide, a~50% error in the estimate of peak intensities withifcuropean Union Strategic Programme for R&D in Information
the waveguide would influence th#andn, values by~50% Technology.
also. Villeneuveet al.[39], [40] evaluated the TPA coefficients
andns for both AlIGaAs and GaAs—AlGaAs waveguides. They
obtain ann, value of~ 4 x 1013 cm? /W for GaAs/AlGaAs
guantum-well waveguides at 1;5n.

the spectra are indicative of SPM within the waveguide. T
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