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Abstract 

We present results from the elemental and molecular species dynamics of high energy materials (HEMs) studied 
using laser induced breakdown spectroscopy with femtosecond (fs) laser pulses. Spectral emission behavior of 
atomic and molecular species of HEMs such as NTO (3-nitro-l,2,4-triazol-5-one), TNT (tri-nitro toluene) and 
ANTA (5-amino-3-nitro-1H-1,2,4-triazole) were studied in different atmospheres of Argon, Nitrogen, and ambient 
air. We used fs pulses (~40 fs, 2.5 mJ, 1 kHz) for creating the breakdown. CN and C2 molecular species were 
formed from these organic molecules during the breakdown. These molecular species are key signatures of organics 
substances for identification of HEMs.  

Introduction 

Laser induced breakdown spectroscopy (LIBS), an emerging tool for multi-elemental analysis, has specific 
advantages compared to other techniques like Inductive Coupling Plasma Mass Spectrometry, Atomic Absorption 
Spectroscopy and Atomic Emission Spectroscopy [1-3]. A few noted advantages include simultaneous multi-
element detection, high detection speed, requirement of small amount of material for testing, and material could be 
in any form.  LIBS has been proved to be an attractive and versatile technique for the detection of hazardous and 
prohibited substances [5-9]. Especially, the standoff detection potential makes this technique an attractive 
contrivance for detection of high energy materials (HEMs)[5]. Introducing ultrashort pulses in LIBS has definite 
advantages [10], (a) low ablation threshold (b) less thermal damage to the sample (c) nearly background-free spectra 
devoid of Continuum and the possibility of beam filamentation over a period of few kilometers for implementing 
remote LIBS [11]. Femtosecond LIBS was successfully demonstrated for bacterial detection [12, 13], animal tissues 
[14], combustion diagnostics [15] and explosive detection too [16 -19].  

High energy materials (HEM’s) are soft organic compounds with the general formula CαHβNγOν. The 
dominant peaks in the LIBS spectra of all such compounds comprise of Carbon, Hydrogen, Oxygen and Nitrogen. 
They all are exhibit similar molecular and elemental signatures in their LIBS spectra. These molecular species are 
key signatures of organics substances for identification of organic HEMs [7, 8]. CN and C2 molecular species were 
formed when these organic molecules underwent breakdown. The plasma chemistry involving the formation of 
molecular fragments is a complex phenomenon. The formation of molecular species will be either from the ejection 
of molecular radicals due to direct vaporization of sample or due to the recombination reaction happening between 
the constituent atomic species present in plasma. There could be the chances of surrounding atmosphere interacting 
with the plasma continents and leading to formation of these molecular radicals. Especially in the case of CN 
molecular fragments, the probability of CN formation is more when atmospheric nitrogen interacts with C and C2. 
Therefore, it is necessary to study the sources for formation of CN and C2 molecules. Very few studies are available 
in literature explaining the formation dynamics of CN species of plastics and graphite with ns produced plasmas [21-
29]. Some research groups have performed studies explaining the temporal features of atomic and molecular species 
in HEMs [30].  In this paper we present the results of our recent efforts to study high energy materials (HEMs) using 
laser induced breakdown spectroscopy (LIBS) with ultrashort laser pulses. Spectral emission behavior of HEMs 
such as NTO (3-nitro-l,2,4-triazol-5-one), TNT (tri-nitro toluene) and ANTA (5-amino-3-nitro-1H-1,2,4-triazole) 
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C2 swan band corresponding to states  ug AD Π−Π 33  with transitions 0=Δν  was observed near 516.47 nm. 
Elemental peaks corresponding to C, H, N and O were also assigned and are shown in figure 1. The overall 
description of elemental and molecular peaks observed in the spectra from three samples is presented in table 2.  All 
elemental and molecular features observed for three samples in three different atmospheres were not the same. 
Depending on the sample nature as well as surrounding atmosphere, slight variations in intensities were observed.  
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Figure 1 LIBS spectra of TNT obtained with fs laser excitation in air atmosphere, the gate width of 800 ns and 100 ns initial 
delay were utilized to record the spectra. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 Description of elemental and molecular peaks obtained with the spectra of NTO, TNT and ANTA samples in three 
atmospheres.  
 

Species Peaks (nm) 

C 247.82 

Ca 393.35, 396.83, 422.67 
CN - (Δυ = + 1) 359.02 
CN - (Δυ = 0) 388.28, 387.07, 386.16, 385.40, 385.01 

CN - (Δυ = −1) 421.50, 419.63, 418.03, 416.78 
C2 - (Δυ = +1) 473.63, 471.50 
C2  – (Δυ = 0) 516.47 

Na 588.89, 589.50 
Hα 656.2 
O 777.2, 844.55 
N 
 742.2, 744.1, 746.8, 821.50, 822.35,867.80, 868.80 
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The surroundings of plasma influence the molecular formation significantly. Therefore, to study the sources of 
formation mechanism of CN and C2 molecules, we have chooses three different atmospheres such that, one was 
nitrogen which created 100 % nitrogen surrounding the plasma, second was  ambient air atmosphere where more 
than 75% was nitrogen.  In the last case the experiments were performed in argon buffer gas (0% surrounding 
nitrogen), which is used to create inert atmosphere surrounding the plasma for demonstrating a situation for CN 
formation between the atoms present in the plasma only. We attempt to understand the CN molecular formation 
mechanism and figure out the contribution from surrounding atmosphere to the plasma. Experiments were 
performed in a controlled manner such that purging the gas on to the sample exactly where the plasma was formed. 
Figures 2(a) - 2(c) illustrate the spectra obtained with NTO, TNT and ANTA samples using fs pulses. In each case 
the top graph corresponds to the LIBS spectra obtained in Nitrogen whereas the middle spectra were obtained in 
argon atmosphere and the bottom spectra were obtained in Argon atmosphere. 
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Figure 2(a) – (c) LIBS spectra of (a) NTO, (b) TNT and (c) ANTA obtained with fs laser excitation in three different 
atmospheres, the gate width of 800 ns and 100 ns initial delay were utilized to record the spectra. 

CN violet band transitions with 0=Δν  were observed with greater magnitude among all but these peaks 
were intense in Nitrogen atmosphere in comparison to others. Carbon peak was observed to be higher in Argon 
atmosphere. In three atmospheres cases the availability of carbon is the same (since it is from sample only) but differ 
in the nitrogen content due to surrounding atmosphere. It is evident that elemental/molecular carbons in plasma react 
with nitrogen decreased as in the surrounding nitrogen percentage decreased which is reflected in CN magnitude. 
Similar observation was recorded in all three samples. It signifies that Nitrogen present in the ambient atmosphere 
plays a major role in CN molecular formation. In Argon atmosphere the surrounding nitrogen content is nil and, 
therefore, the un-reacted carbon will remain intact and precisely this is the reason Carbon peak was observed to be 
higher in Argon atmosphere. The C2 swan band (transitions with 0=Δν  at 516.46 nm) was observed in TNT for 
all atmospheres and was observed to be weak in NTO and ANTA in Argon atmospheres.  
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Temporal studies 

          To understand the temporal dynamics of LIBS signal we had recorded spectra with different gate delays. The 
LIBS spectra were recorded with 25 ns gate width starting at 80 ns with 25 ns interval up to 400 ns. Figures 3 (a) – 
(d) present the typical intensity variation of different elemental and molecular species observed with time in ANTA 
sample, (a)  corresponds to C-247.82 nm, (b) CN – 388.2 nm, (c) H – 656.2 nm and (d) N-868.8 nm sample for all 
three atmospheres. The intensity of C, H, N, O, and CN peaks recorded with time delay were fitted with a single 
exponential. Table 3 summarizes the decay constants obtained for all three samples in all all atmospheres. As seen 
from figures 3(a), (b) [decay of C-247.82 nm and CN -388.2 nm] the carbon intensity was observed to be high in 
argon atmosphere compared other two atmospheres. The CN intensity was observed to be high in Nitrogen 
atmosphere.  From the decay constants presented in table 3 we notice that the Carbon decay constant was longer for 
Argon atmosphere and CN decay was longer for nitrogen atmosphere for all samples. In Argon atmosphere due to 
the lack of availability of surrounding nitrogen carbon will remain un-reacted. Hence the decay of carbon was 
slower in argon whereas in other atmospheres carbon will react with nitrogen present in the atmosphere and, 
therefore, the decay of carbon species is expected to be faster in Nitrogen and air atmosphere. The probability of CN 
species formation was high in air and nitrogen atmospheres due to the presence of surrounding nitrogen but it is 
limited in argon since there is no extra nitrogen content apart from sample.  Consequently, the CN species decays 
very fast in the argon atmosphere. Hydrogen peak intensity was high in argon atmosphere for all the samples; the 
decay rate was also observed to be longer in argon atmosphere. The Oxygen peaks decay constants observed for 
three samples in argon demonstrated long decay time for NTO with similar behavior observed in air atmosphere too. 
We observed longer decay times of Oxygen and this could be due to the usually high plasma lifetime in argon 
atmosphere and, therefore, the elemental species life time will be higher.   
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Figure 3 (a) – (d) decay of C-247.82, CN - 388.2, H-656.2 nm and N-868.8 nm peaks in three atmospheres for ANTA samples. 
Spectra were recorded with a gate width of 25 ns and step size of 25 ns, after an initial gate delay of 80 ns of laser pulse.  

 

The CN band formation in laser produced plasmas is mainly governed by a set of chemical reactions taking 
place within the plasma and are described by C2 + N2 → 2 CN (1) and 2C + N2→ CN (2) [20 – 25]. In the above 
reactions highest availability of N2 will be from atmospheric air. Therefore, these reactions will be dominant when 
Nitrogen surrounds the plasma and contribute strongly towards the CN molecular formation. There are another 
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possible reactions contributing towards the formation of CN species, for e.g. C2 + N → CN + C (3) and C + N → CN 
(4) [23 - 27].  These two reactions [(3) and (4)] refer to CN formation when N reacts with C2 and C species. The 
possibility of these reactions arises only from Nitrogen presence in the sample constituents within the plasma.                                      

 

 

Table 3 Summary of the decay constants of important atomic and molecular species extracted from the LIBS spectra of NTO, 
TNT and ANTA samples acquired using fs pulses 

Figures 4(a)-4(c) represents the temporal variation in CN(tot)/C ratio for all the samples. Figure 4(a) 
illustrates that at initial time delays CN/C ratio for NTO increased slowly.  After initial times (~150 ns) the ratio 
increased sharply in Nitrogen. But in Argon atmosphere it continued increasing slowly.  It was observed in all 
samples that the CN/C ratio increased gradually (up to ~150 ns) in all atmospheres. It peaked at time scales of ~225 
ns.  As time progress the plasma tries to expand and while expanding the species present in the plasma try to interact 
with the surrounding atmosphere where the secondary chemical reactions take place. Hence, stronger CN molecular 
formation takes place where the above stated reactions are dominant at these time scales. All samples exhibited the 
increment of the CN/C ratio in air and nitrogen atmosphere. The CN/C ratio increment in argon atmosphere was not 
steep due to lack of additional nitrogen atoms to interact with the plasma.  CN formation occurs with species present 
in the plasma only. At initial time scales CN could form from its native radicals and the chemical reaction occurring 
within the species present in the plasma only. At these time scales CN could form following reactions (3) and (4).  
As time progresses the plasma will expand and during this period the species present in the periphery of the plasma 
tries to interact with the surrounding atmosphere. In these time scales CN formation could be boosted by the 
probability of chemical reactions (1) and (2). By closely observing the temporal decay dynamics of all three samples 
it is evident that CN formation was stronger in air and nitrogen compared to argon thereby clearly suggesting the 
surrounding atmospheric effects on the molecular formation. Complete details of the temporal variation of various 
molecular and atomic species from HEMs samples under different surrounding atmospheres could possibly lead to 
better understanding of the sources of formation and thereby better techniques for identification (combined with 
other complementary data) of such materials.  

Decay Constants 
Sample Peak Nitrogen (ns) Air (ns) Argon (ns) 

NTO 

C-247.2 nm  
43 

 
54 

 
121 

CN – 388.2nm 209 172 164 
H- 656 nm 34 36 73 

O-777.2 nm 36 39 66 
N-868  nm 35 42 40 

TNT 

C-247.2 nm 45 65 106 
CN – 388.2nm 364 181 151 

H- 656 nm 36 37 58 
O-777.2 nm 39 38 74 
N-868  nm 45 35 34 

ANTA 

C-247.2 nm 41 32 71 
CN – 388.2nm 129 80 60 

H- 656 nm 24 30 47 
O-777.2 nm 30 33 38 
N-868  nm 42 32 40 
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Figure 4 Temporal evolution of CN (388.2 nm)/C (247.8 nm) in (a) NTO (b) TNT and (c) ANTA. Spectra were recorded with a 
gate width of 25 ns and step size of 25 ns after an initial gate delay of 80 ns of laser pulse.  

Conclusions 

LIBS spectral features of three HEMs NTO, TNT and ANTA were studied in three different atmospheres Nitrogen, 
ambient air and Argon. The differences observed in elemental and molecular features in three atmospheres were 
discussed. Temporal variations of spectral studies were performed for all the samples. The C -247.8 nm decay 
observed to be longer in argon case compared to nitrogen and air. The CN molecular formation was observed more 
intense in nitrogen and air atmosphere compared to argon. The CN/C ratios has peaked ~200 ns – 275 ns range for 
the samples.  
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