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Abstract 

Laser induced breakdown spectroscopy is an attractive and versatile spectroscopic technique employed 
successfully for the detection of hazardous substances. The specific advantages of using femtosecond (fs) pulses with 
LIBS technique include lower ablation threshold, reduced background Continuum emission. In addition to atomic peaks 
in plasma the molecular peaks (CN and C2) also play a significant role in classification of these samples.  In the present 
work fs LIBS spectra were recorded from five different samples (RDX, HMX, NTO, ANTA, and DADNE) made in the 
form of pure pellets. Correlation statistics were used to discriminate the samples based on molecular, atomic ratios. This 
paper discusses, in detail, a simple correlation technique applied for the fs LIBS data for achieving classification. 

Introduction 

Laser induced breakdown spectroscopy (LIBS) has been acknowledged as an attractive and a versatile 
spectroscopic technique for the detection of hazardous substances [1] such as explosives with encouraging attributes 
such as stand-off detection capability, prospective trace material discovery, and high speed detection [3-8]. LIBS 
technique typically employs a pulsed laser (nanosecond/ femtosecond) to produce breakdown on the surface of sample to 
be examined. The hot dense plasma is formed after the breakdown. The created hot plasma in the process of cooling 
emits radiation. The emitted light is collected with a spectrometer and the collected spectra consist of several sharp 
peaks, characteristic of elemental species present in the sample [9-11]. Femtosecond (fs) laser as an excitation source has 
recently been added to LIBS techniques to create plasma and perform spectroscopic studies.  Fs laser plasma can be 
created with lower incident laser energy and ablation threshold compared to the nanosecond (ns) case. Furthermore, the 
produced plasma emits a nearly background less Continuum [12]. In comparison to ns LIBS, fs laser produced plasma 
has negligible interaction with the input pulses. Furthermore, the possibility of performing remote detection with 
filament induced breakdown using ultrashort lasers makes it even more practical [13]. Gordon and his co workers 
demonstrated that using polarization resolving technique good S/N ratios fs LIBS spectra were recorded with non-gated 
spectrometer [14-15]. Baudelet et al. demonstrated the detection of bacterial trace samples effectively using fs LIBS [16-
17].  Detection of several explosives has been made possible with fs lasers by several groups in trace form [18-20] and in 
pure form [21-22]. 

Most of the energetic materials are composed of hydrogen, carbon, oxygen, and nitrogen exhibiting similar 
molecular and elemental signatures in their LIBS spectra. The task of identifying one material from the other is not 
straight forward. In addition to atomic peaks, the molecular peaks (such as CN and C2) play an important role in 
classifying these samples. Careful analysis is required to identify an exact HEM. Several statistical techniques have been 
utilized by many groups to classify several explosive samples using molecular and atomic peaks [24-27]. Utilization of 
different statistical techniques need some treatment of some preprocessing is necessary. In this work we demonstrated 
the technique using elemental/molecular ratios with different 2D ratios combination. The present study exploring effort 
has been made to discriminate HEMs to classify the several chemical warfare samples like RDX (C3H6N6O6), HMX 
(C4H8N8O8), NTO (C2H2N4O3), ANTA (C2H3N5O2) and DADNE (C2H4N4O4). All the compounds were having the 
similar elemental composition. 
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Experimental Setup 

Amplified Ti:sapphire laser pulses with duration of ~40 fs, maximum energy of 2.5 mJ delivered at a repetition 
rate of 1 kHz (central wavelength of 800 nm) were used in all the experiments. The samples were made in the form of a 
pellet by first grinding the sample with agate mortar and then applying 10 ton hydraulic pressure onto the powdered 
sample. The fs laser pulses were focused on the target sample mounted on XY translation stage with 8 cm plano-convex 
lens. The energy used to produce plasma was ~1.2 mJ and corresponding fluence estimated was ~22 J/cm2

. A collection 
lens system unit was placed to collect the light from plasma and light passed through a fiber optic cable and finally 
transferred to a gated ICCD spectrometer (Andor i-star DH734 ICCD + ME 5000 Mechelle spectrograph, resolution 
5000). Argon gas was purged through a nozzle onto the sample where laser pulses were focused on to the pellets. 

Results and discussion: 

Figure 1 shows the LIBS spectra of different explosives recorded with fs laser pulses in argon atmosphere. A 
gate delay 100 ns and gate width 800 ns were used for recording the spectra. The elemental peaks corresponding to C-
247.82 nm, N-821.50 nm, 822.35 nm, 867.80 nm, 868.80 nm, O-777.2, 844.55 nm and H-656.2 nm lines and molecular 
peaks of CN in between 385-389 nm range were observed in the spectra. These spectral features play a significant role in 
discrimination of these samples. In LIBS technique, the ablated volumetric mass directly represents the composition of 
sample constituents, this will reflect in the LIBS spectrum. All 5 samples have same elements C, H, N and O with 
different composition. So the spectral emission from LIBS plasma offered similar peaks with different magnitudes as 
shown in the figure 1. The classification of these samples using obtained LIBS spectra is a difficult task. Therefore, 
precise statistical techniques are needed to classify these samples. 
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Figure 1 LIBS spectra of five explosive molecules ANTA, DADNE, HMX, NTO, and RDX obtained with fs laser excitation in argon 
atmospheres. A gate width of 800 ns and an initial delay of 100 ns were utilized to record the spectra. Different atomic and molecular 
peaks are assigned and indicated in the graphs.  
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To implement any statistical technique for these spectral data there is a need for a lot of pre processing procedures such 
as base line correction, smoothing, and normalization to be applied for the data. In the present technique there is no need 
of any preprocessing. Simply the 2D plot for any two elemental/molecular ratios gives reasonable classification among 
these samples. Moros et al. demonstrated that by plotting the intensity of two peaks in two axes they were able to 
distinguish explosive from non-explosives.  In the present study using 2D ratio method we try to distinguish five 
different explosive molecules based on LIBS data. C-247.82 nm, CN-388.2 nm, H-656.2 nm, O-777.2nm and N- 868.6 
nm peaks were chosen for further analysis. The areas of these peaks were calculated using Lorentzian fits. The areas 
were divided by transition probability and statistical weight of particular transition. Total 10 molecular/elemental ratios 
were computed using these areas. The 10 ratios of CN/C, CN/H, CN/O, CN/N, C/H, C/O, C/N, H/O, H/N and O/N were 
calculated. The 2D plot can be drawn between any of these two ratios. There can be possibly be 45 2D ratios 
combinations.  Out of all 45 2D ratios good quality discrimination was obtained with some 2D ratios. In figure 2 we have 
shown such 2D ratios plots 2(a) 2D plot between CN/H Vs H/O ratios, 2(b) between CN/H and C/O, 2(c) between CN/C 
and H/O and 2(d) between C/H Vs C/O. A total of 190 spectra were recorded. IN figure 2 the points (corresponding to 
each sample spectrum) were scattered into groups and can be visualized in the forms of clusters. These plots were 
windows to endow the classification of these samples.  
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Figure 2 corresponds to plots of 2D ratios models 2(a) CN/H Vs H/O, (b) CN/H Vs C/O, (c) CN/C Vs O/H and (d) C/H Vs C/O. In 
the plots the points in block squares represents sample ANTA (A), red circles represents  DADNE (D), green up triangles represents  
HMX (H), blue lower triangles corresponds to NTO (N) and violet diamonds corresponds to RDX (R) samples. 
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Validation using k- nearest-neighborhood (KNN) technique 

The above 2D models provide only visualization of the data.  Any classification model goal is to provide an 
optimal discrimination between several classes in terms of predictive performance. If we wish to know the performance 
of each 2D ratios model we have to apply the validation techniques. We used validation technique called k-nearest-
neighbors (KNN) technique to validate our models. Here ‘k’ is a number (integer) to be given which estimates distance 
between the ‘k’ nearest points in the cluster. In the nearest-neighbor method we inspect the similarities with individual 
objects and assign objects to the class that is prevalent in the neighborhood. The KNN classification is performed on the 
software platform R.3.0.0 Version (statistical computing and graphics software). The whole data can be divided into two 
sets: one is training set to build the model with known class of samples while the other set of data can be called as testing 
set which is used to test the model performance. Using the given k values as an input it classifies the objects. Then the 
testing can be performed using test data set. After testing the result will be supplied as the predicted class values with 
probabilities. Then the cross validation is performed between the predicted class and actual class values of the test data 
set. Using the cross validation we can generate the confusion matrix, which contains information about actual and 
predicted classifications performed by the classification system. Table 1 is such type of matrix obtained using cross 
validation. From this table values individual confusion matrices for each sample can be constructed to calculate the 
individual class performance of each sample. The individual confusion matrix for sample H (HMX) is shown in the right 
side of the confusion matrix. This provides insight to what distinguishes different classes from each other. From this 
individual matrix we can compute the sensitivity (true positive rate), specificity (true negative rate), accuracy (proportion 
of correct guesses) and precision (positive predictive rate) for each individual samples. These parameters provide us the 
information of individual sample prediction performance. The overall accuracy of the model can be computed by the 
actual confusion matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Confusion matrix obtained using cross validation between predicted values using KNN and actual values. Here A means 
ANTA, D- DADNE, H-HMX, N-NTO and R-RDX samples. The numbers gives the quantification of correct and wrong classification 
for a particular sample. The right side table is the individual confusion matrix for sample H derived from the confusion matrix, which 
contains the values of true positive, false positive, true negative and false negative predictions for HMX sample. 

 
Confusion Matrix 

 

 Actual value  
Predicted 

value A D H N R  
A 9 0 0 0 0 9 

D 0 2 0 0 0 2 

H 2 1 7 0 0 10 

N 2 0 1 5 1 9 

R 0 0 0 1 7 8 

       

 13 3 8 6 8 38 

        

for H 

 
True False 

+ve 7 3 

-ve 1 27 
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Table2 Performance result of different 2D ratios models. The measurement of sensitivity, specificity, accuracy and precision 
parameters for each and individual samples were shown in the table. 

        
RATIO  A D H N R Overall 

accuracy 

        
        

CN/N vs 
H/N 

Sensitivity 77% 100% 25% 100% 50%  Specificity 80% 100% 97% 88% 96%  Accuracy 79% 100% 82% 89% 82% 71% 
Precision 67% 100% 67% 60% 86%  

        

CN/H vs 
H/O 

Sensitivity 85% 100% 75% 83% 50%  Specificity 100% 97% 97% 88% 96%  Accuracy 95% 97% 92% 87% 82% 82% 
Precision 100% 75% 86% 56% 86%  

        

CN/H vs 
C/O 

Sensitivity 54% 100% 75% 50% 50%  Specificity 84% 100% 97% 75% 100%  Accuracy 74% 100% 92% 71% 84% 66% 
Precision 64% 100% 86% 27% 100%  

        

CN/C vs 
O/N 

Sensitivity 77% 100% 50% 83% 40%  Specificity 96% 91% 87% 91% 96%  Accuracy 89% 92% 79% 89% 82% 68% 
Precision 91% 50% 50% 63% 80%  

        

CN/C vs 
CN/N 

Sensitivity 77% 100% 25% 33% 54%  Specificity 76% 94% 93% 94% 92%  Accuracy 76% 95% 79% 84% 79% 63% 
Precision 63% 60% 50% 50% 78%  

        

CN/C vs  
H/O 

Sensitivity 62% 100% 38% 100% 33%  Specificity 88% 97% 93% 84% 86%  Accuracy 79% 97% 82% 87% 74% 61% 
Precision 73% 75% 60% 55% 43%  

        

C/H vs 
C/O 

Sensitivity 69% 67% 88% 83% 54%  Specificity 100% 100% 90% 88% 96%  Accuracy 89% 97% 89% 87% 82% 79% 
Precision 100% 100% 70% 56% 88%  

        

C/O vs 
H/O 

Sensitivity 54% 33% 75% 67% 50%  Specificity 92% 97% 80% 91% 92%  Accuracy 79% 92% 79% 87% 79% 63% 

      Precision 78% 50% 50% 57% 75%  
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The KNN validation technique was applied for all the 45 models of 2D ratios. Some of the best performed 2D models 
with KNN are shown in the table 2. The model performance parameters for each sample prediction derived from 
individual confusion matrix of the sample for different 2D models are tabulated. The best overall accuracy (82 %) was 
obtained with CN/H Vs H/O ratios model. The CN/N Vs H/N, C/H Vs C/O ratios models achieved >70% overall 
accuracy.  Remaining all models were found to be >60% accurate, which is reasonably good. The best classified among 
all the samples in all 2D ratios was the sample DADNE. The sample HMX was moderately classified in some models.  
However, since these 2D models having good predictive probability it can provide an insight in distinguishing different 
classes from each other. 

In the KNN technique the performance depends on k value. The value of k will be crucial in classification of 
objects.  However, there is no particular method to define a best k value. The smallest value of k gives the optimal 
predictions; larger values may also lead to equally good predictions. To get desired k value for good performance several 
cross validations with test sets were performed with different k values. The curve shown in figure 3(a) was obtained from 
10 fold cross validation done with several k values. This tells that at k = 9 this model performs well. The KNN picks the 
neighbors in random process so there could be some deviation in finding the good k values. Hence, the best performance 
k value can be obtained by computing 1000 such cross validations. Figure 3(b) corresponds to best k values obtained 
with 1000 cross validations.   

     

Figure 3 (a) corresponds to performance of k value obtained in 10 cross validations (b) Represents best k values performance obtained 
using 1000 cross validations. 

This analysis suggests that using 2D ratios models we can create markers for each explosive. Further steps of this work 
include performing the analysis with 3D ratios models utilizing the same data. Our future goals include unambiguous 
detection of explosives molecules (even if mixed with PMMA matrix) with LIBS data by applying the validity of 2D and 
3D ratios models.  

Conclusions 

The present work demonstrates that using 2D ratios combination models classification of organic explosives 
samples with LIBS spectral data. The classification merely achieved reasonably good predictability of each and 
individual organic explosive samples. The performance of all 2D ratios models was done with the KNN technique. The 
individual sample identification capabilities were measured using sensitivity, specificity, accuracy and precision 
parameters.  
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